STORMWATER MEMORANDUM

DATE: September 1, 2022

TO: Town of Florida Planning Board

FROM: Stephen M. Johnston, PE

RE: Dollar General Fresh Conceptual Stormwater Management Plan, Town of Florida, NY

Dollar General (DG) Fresh Distribution Center will include the construction of a 167,500 square foot cold storage warehouse with dispatch and administrative offices, along with associated employee, truck, and trailer parking, loading docks, a 420 square foot guard house, a pumphouse with water tank, and an above ground fuel station.

The 21.47-acre site is currently entirely pervious and is used for agricultural purposes. The existing topography slopes from the southeast corner of the site at an elevation of 544 feet to the northwest corner at an elevation of 470 feet. Similar to the larger distribution center located across Highway 5S from the new cold storage warehouse, the site will be used for a large-scale warehousing and distribution facility. By their nature these facilities need to be relatively flat to readily enable truck movement and parking. As a result, large flat sites with significant impervious areas generate significant runoff that must be collected and disposed of quickly to minimize disruption of the facility.

The site includes an existing wetland that totals 0.49 acres. This wetland stretches along a narrow ditch that drains from the south where it picks up the drainage ditch and existing 24-inch culvert along Highway 55. The drainage continues north through the center of the site to the northern, widened portion of this wetland that is intended to be preserved. A wetland mitigation area is proposed to the west side of the site, however, the site will likely require in-lieu wetland mitigation credits to achieve the total required wetland replacement. Wetland impacts amount to ~0.25 acres due to the construction of the warehouse. The wetland mitigation shown equals ~0.22 acres and is proposed to be located partially within the Town of Florida right of way.

The geotechnical investigation indicated large amounts of dense clayey silts (ML) not ideal for infiltration. Infiltration was then discarded from the realm of stormwater treatment possibilities on this site. The geotechnical report was also consistent with the USDA Soil Survey which indicated largely Hydrologic Soil Group C/D and trace amounts of B soils, see Figure 1 below. The Geotechnical Report is included in this memorandum.

The significant grade differential across the site along with the existing wetlands and poor draining soils start to limit stormwater options on the site. Given the nature of the site and proposed project it appears the best solution for managing stormwater on the site is to maintain as close as possible to existing, predevelopment drainage subcatchments and to provide rate control where needed through the use of a wet pond. Pretreatment will be managed through forebays. The conceptual stormwater management plan for this site is intended to meet the Criteria in the New York Stormwater Management Design Manual dated January 2015.

RE: DG Fresh Conceptual Stormwater Management Plan, Town of Florida, NY

Date: September 1, 2022

Page 2 of 4

Figure 2:	USDA Web	Soil Survey	v Kev an	d Soil Types
I IGMIC E.	ODDA HCS	5011 501 VC	, ite y air	

Map Unit Symbol	Map Unit Name	Percent of AOI	Hydrologic Soil Group
DaB	Darien silt loam 3-8% slopes	71.2%	C/D
DaC	Darien silt loam 8-15% slopes	3.8%	C/D
LaB	Lansing silt loam 3-8% slopes	18.4%	В
LaC	Lansing silt loam 8-15% slopes	6.5%	В

The site is to have a proposed impervious surface area of approximately 12.58 acres. This is 58% impervious cover. The water quality volume (WQv) to be treated as a result of this new impervious cover is approximately 53,460 cubic feet. The proposed stormwater management solution will be a combination of a wet pond and three forebays for pretreatment. This pond will be the destination for all impervious runoff on site except small portions of driveway that will be infeasible to route that direction due to the steep grades required to tie into the existing street. These small impervious areas will be routed to a swale prior to discharging to the wetland mitigation area.

Due to the nature of the drainage on site three separate forebays will be provided as pretreatment before the wet pond. Doing so will also mimic existing drainage patterns. Currently runoff drains northwest to the wetland and ultimately offsite to the northwest. The forebays and wet pond combined have a permanent ponding volume that exceeds that of the required WQv. The proposed system shall manage the runoff rate of the following larger events: the Channel Protection Volume (CPv: 1-year storm), Overbank Flood (Qp: 10-year storm), and the Extreme Storm (Qfh: 100-year storm). The existing and proposed drainage maps are included in this memorandum for reference.

RE: DG Fresh Conceptual Stormwater Management Plan, Town of Florida, NYDate: September 1, 2022Page 3 of 4

The water quality volume requirements are broken down by subcatchment below. Each forebay is required to pretreat a minimum of 10% the provided volume of the wet pond and is calculated as such. Two of the forebays will be managed by an outlet control device routed to the wet pond and the third will be controlled by an overflow spillway directly connected to the pond. Subcatchment P1, which consists of the perimeter of the site and is 98% pervious routes directly offsite, the 0.102 acres of impervious in subcatchment P1 will route northwest to the wetland remediation area. Although the WQv required by P1's impervious runoff will be provided in the total volume of the pond and forebays. The formula used to determine WQv (ac-ft) is calculated as follows:

BMP/Subcatchment	Impervious	A (Total	I (%	Required WQv	Provided WQv
	Area (Acres)	Area, Acres)	Impervious)	(cu ft)	(cu ft)
Forebay 1 (3P)	N/A	N/A	N/A	2,180	9,290
Forebay 2 (2P)	N/A	N/A	N/A	2,180	16,300
Forebay 3 (4P)	N/A	N/A	N/A	2,180	14,085
Wet Pond (2P, 3P &	12.474	17.102	73%	47,920	21,790
4P)					
Offsite (1P)	0.102	4.414	2%	1,180	0
Total:	12.576	21.516	58%	53 <i>,</i> 460	61,465

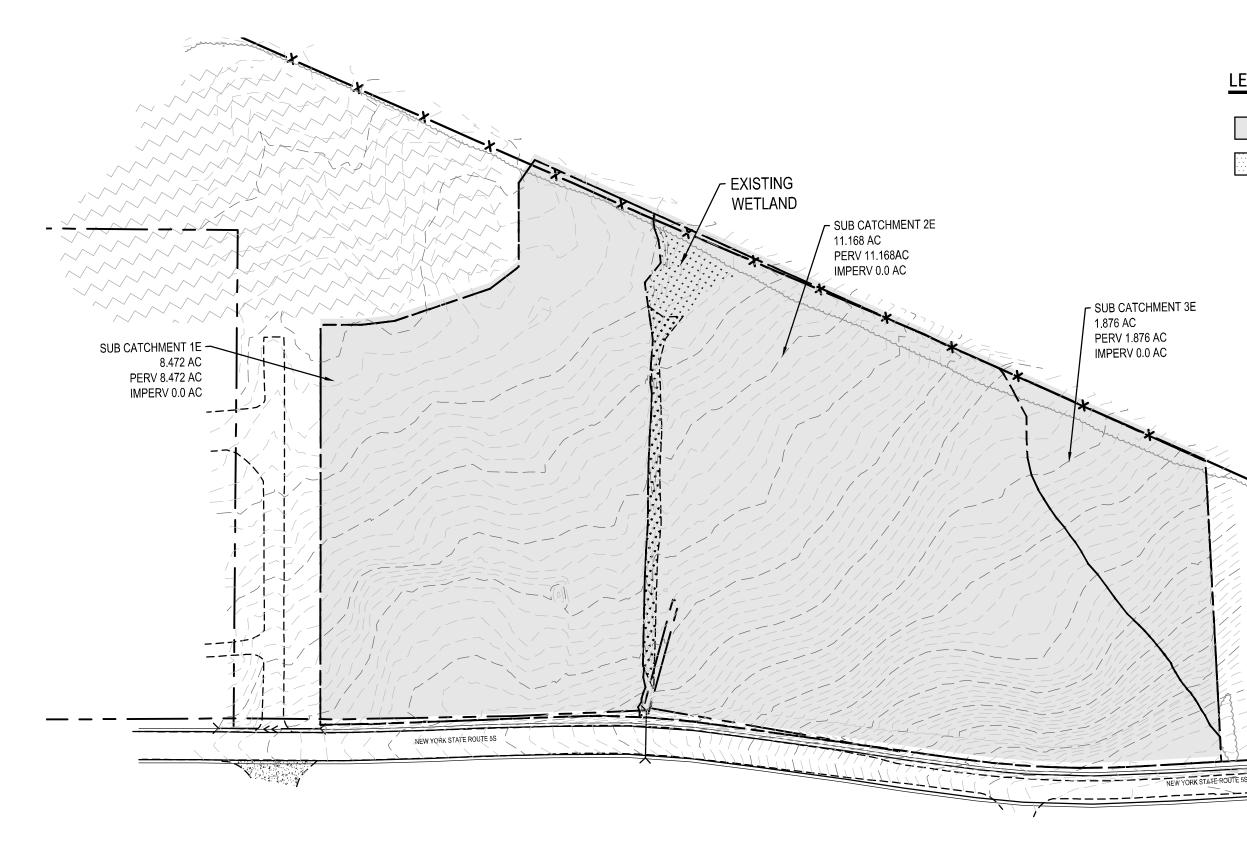
Figure 3: WQv Summary

The total required WQv in the table above is 53,460 cubic feet. This volume is the sum of the required volume for each forebay and the wet pond combined as calculated from each BMP's respective drainage area. This could be calculated from the total area of 21.516 and the overall 58% impervious on site, which would include P1, but the 98% pervious P1 subcatchment drains directly offsite. This calculation would give a less stringent total required WQv of 49,220 cubic feet, thus the more stringent calculation method was used as the required WQv for this site.

The post-construction runoff rates shall not exceed existing conditions in the CPv, Qp, and Qfh events. Ultimately in both the proposed and existing conditions on site, the runoff will flow offsite in the northwest direction. In the proposed condition, the only difference is that the impervious runoff will be routed through the stormwater management forebays and wet pond prior to discharge offsite. Attached to this memorandum is the HydroCAD analysis prepared to ensure the sizing of the stormwater facilities. This breakdown is summarized in Figure 4 below.

Sub-Catchment	CPv (1 year: CFS)	Qp (10 year: CFS)	Qfh (100 year: CFS)	
Existing Conditions	18.0	50.4	115.2	
Proposed Conditions	11.7	24.5	46.7	
Difference	-6.3	-25.9	-68.5	

RE: DG Fresh Conceptual Stormwater Management Plan, Town of Florida, NYDate: September 1, 2022Page 4 of 4


We believe that our design meets the intent of the New York State SPDES Permit for stormwater retention, rate control, and water quality treatment. A more detailed stormwater management plan and stormwater pollution prevention plan will be provided in a subsequent design phase. Please direct any questions regarding this report and the design of the project to Marcie Weslock, PE, <u>mweslock@elanlab.com</u>.

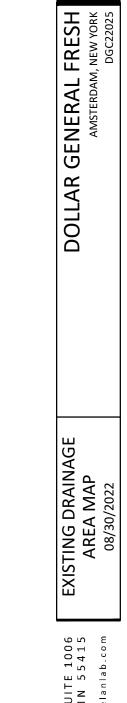
Encl: Proposed and Existing Drainage Maps HydroCAD Model Geotechnical Report

cc: Élan File No.: DGC22025

EXISTING DRAINAGE MAP

()

SCALE IN FEET


LEGEND

PERVIOUS AREA 21.516 AC

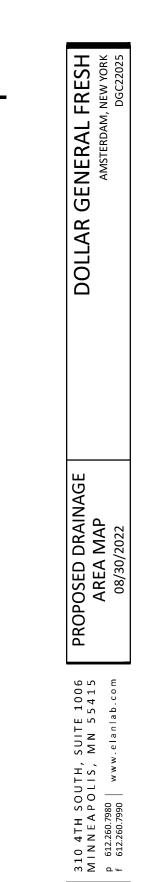
IMPERVIOUS AREA 0 AC

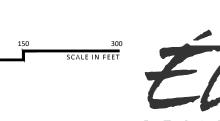
TOTAL 21.516 AC

310 4TH SOUTH, SUITE 1 MINNEAPOLIS, MN 55 p 612.260.7980 www.elanlab f 612.260.7990 www.elanlab

PROPOSED DRAINAGE MAP

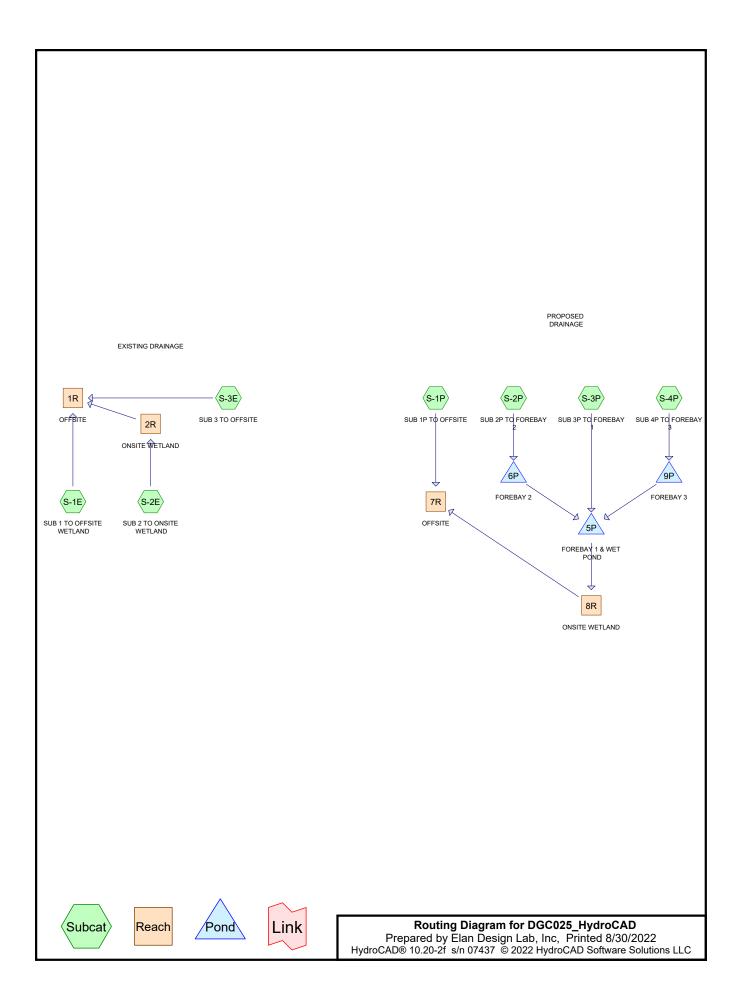
 (\mathbf{f})


LEGEND



PERVIOUS AREA 8.940 AC

IMPERVIOUS AREA 12.576 AC


TOTAL 21.516 AC

ngineering | Landscape Architecture | Const e r v i c e

Event	#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
	1	1 yr (Cpv)	Type II 24-hr		Default	24.00	1	2.20	2
2	2	10 yr (Qp)	Type II 24-hr		Default	24.00	1	3.75	2
:	3	100 yr (Qf)	Type II 24-hr		Default	24.00	1	6.50	2
	4	Water Quality (WQv)	Type II 24-hr		Default	24.00	1	1.10	2

Rainfall Events Listing

Area Listing (selected nodes)

ŀ	Area	CN	Description
(ac	res)		(subcatchment-numbers)
30	.456	80	>75% Grass cover, Good, HSG D (S-1E, S-1P, S-2E, S-2P, S-3E, S-3P, S-4P)
11.	.740	98	Paved parking, HSG D (S-1P, S-2P, S-3P, S-4P)
0.	.836	98	Roofs, HSG D (S-2P)
43	.032	85	TOTAL AREA

Soil Listing (selected nodes)

Soil	Subcatchment
Group	Numbers
HSG A	
HSG B	
HSG C	
HSG D	S-1E, S-1P, S-2E, S-2P, S-3E, S-3P, S-4P
Other	
	TOTAL AREA
	Group HSG A HSG B HSG C HSG D

DGC025_HydroCAD

0.000

0.000

0.000

0.000

0.000

0.000

0.836

43.032

Prepared by Elan Design Lab, Inc	
HydroCAD® 10.20-2f s/n 07437 © 2022 HydroCAD Software Sol	utions LLC

Printed 8/30/2022 Page 5

S-2P

	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.000	30.456	0.000	30.456	>75% Grass cover, Good	S-1E, S-1P, S-2E, S-2P, S-3E, S-3P, S-4P
0.000	0.000	0.000	11.740	0.000	11.740	Paved parking	S-1P, S-2P, S-3P, S-4P

0.000

0.000

0.836

Roofs

43.032 TOTAL AREA

Ground Covers (selected nodes)

			•	5.5		,				
Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)	
1	5P	471.00	475.00	38.0	-0.1053	0.010	0.0	18.0	0.0	
2	5P	475.00	474.00	38.0	0.0263	0.010	0.0	24.0	0.0	
3	6P	480.00	479.00	156.0	0.0064	0.010	0.0	18.0	0.0	
4	9P	482.00	477.00	169.0	0.0296	0.010	0.0	18.0	0.0	

Pipe Listing (selected nodes)

DGC025_HydroCAD Prepared by Elan Design Lab, Inc HydroCAD® 10.20-2f s/n 07437 © 2022 HydroCAD S		1 <i>yr (Cpv) Rainfall=2.20"</i> Printed 8/30/2022 Page 7					
	nrs, dt=0.05 hrs, 961 points x 3 ethod, UH=SCS, Weighted-CN od . Pond routing by Dyn-Sto	J					
	unoff Area=8.472 ac 0.00% Impe e=0.0430 '/' Tc=12.4 min CN=8						
	unoff Area=4.414 ac 2.31% Impe be=0.1540 '/' Tc=1.3 min CN=8						
	noff Area=11.168 ac 0.00% Impe e=0.0540 '/' Tc=16.6 min CN=8						
Subcatchment S-2P: SUB 2P TO FOREBAY Run Flow Length=1,620' Slope:	noff Area=9.583 ac 70.13% Impe =0.0360 '/' Tc=15.2 min CN=93						
	unoff Area=1.876 ac 0.00% Impe be=0.0660 '/' Tc=8.6 min CN=8						
Subcatchment S-3P: SUB 3P TO FOREBAY Run Flow Length=1,531' Slope	noff Area=3.707 ac 58.86% Impe e=0.0350 '/' Tc=16.1 min CN=9	•					
Subcatchment S-4P: SUB 4P TO FOREBAY Run Flow Length=520' Slope	noff Area=3.812 ac 93.68% Impe e=0.0560 '/' Tc=4.0 min CN=97						
Reach 1R: OFFSITE		Inflow=17.99 cfs 1.234 af Outflow=17.99 cfs 1.234 af					
Reach 2R: ONSITE WETLAND		Inflow=8.94 cfs 0.640 af Outflow=8.94 cfs 0.640 af					
Reach 7R: OFFSITE		Inflow=11.74 cfs 2.894 af Outflow=11.74 cfs 2.894 af					
Reach 8R: ONSITE WETLAND		Inflow=10.32 cfs 2.641 af Outflow=10.32 cfs 2.641 af					
Pond 5P: FOREBAY 1 & WET POND Peak	c Elev=477.22' Storage=53,498 c	f Inflow=29.83 cfs 2.642 af Outflow=10.32 cfs 2.641 af					
	c Elev=488.00' Storage=16,298 c af Primary=21.75 cfs 1.635 af						
Pond 9P: FOREBAY 3 Peal	c Elev=488.60' Storage=17,717 c	f Inflow=11.95 cfs 0.593 af Outflow=9.59 cfs 0.593 af					
Total Runoff Area = 43.032 ac Runoff Volume = 3.691 af Average Runoff Depth = 1.03"							

70.78% Pervious = 30.456 ac 29.22% Impervious = 12.576 ac

Summary for Subcatchment S-1E: SUB 1 TO OFFSITE WETLAND

Runoff = 7.88 cfs @ 12.05 hrs, Volume= Routed to Reach 1R : OFFSITE 0.486 af, Depth= 0.69"

Area (a	ac) C	N Desc	cription					
8.4	72 8	0 >759	% Grass co	over, Good,	, HSG D			
8.4	8.472 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
12.4	764	0.0430	1.03		Lag/CN Method,			

Summary for Subcatchment S-1P: SUB 1P TO OFFSITE

[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.92 cfs @ 11.92 hrs, Volume= Routed to Reach 7R : OFFSITE 0.253 af, Depth= 0.69"

Area	(ac) (CN Des	cription		
4.	312	80 >75	% Grass co	over, Good	, HSG D
0.	102	98 Pav	ed parking	, HSG D	
4.	414	80 Wei	ghted Aver	age	
4.	.312	97.6	9% Pervio	us Area	
0.	102	2.31	1% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·
1.3	104	0.1540	1.31		Lag/CN Method,

Summary for Subcatchment S-2E: SUB 2 TO ONSITE WETLAND

Runoff = 8.94 cfs @ 12.10 hrs, Volume= Routed to Reach 2R : ONSITE WETLAND 0.640 af, Depth= 0.69"

Area	(ac) (CN Des	cription					
11	.168	80 >75	% Grass co	over, Good	, HSG D			
11	11.168 100.00% Pervious Area							
Тс	5		,		Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
16.6	1,273	0.0540	1.28		Lag/CN Method,			

Summary for Subcatchment S-2P: SUB 2P TO FOREBAY 2

Runoff = 18.06 cfs @ 12.07 hrs, Volume= Routed to Pond 6P : FOREBAY 2 1.197 af, Depth= 1.50"

Area (ac) (N De	scription		
2.8	362	80 >7	5% Grass c	over, Good	I, HSG D
5.2	252	98 Pa	ed parking	, HSG D	
3.0	336	98 Ro	ofs, HSG D		
0.6	533	98 Pa	/ed parking	, HSG D	
9.8	583	93 We	ighted Aver	age	
2.8	362	29.	87% Pervio	us Area	
6.7	721	70.	13% Imperv	/ious Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
15.2	1,620	0.0360	1.78		Lag/CN Method,

Summary for Subcatchment S-3E: SUB 3 TO OFFSITE

Runoff = 2.01 cfs @ 12.01 hrs, Volume= 0.7 Routed to Reach 1R : OFFSITE

0.108 af, Depth= 0.69"

Area	(ac) C	N Des	cription					
1.	.876	80 >75	% Grass co	over, Good,	, HSG D			
1.	1.876 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
8.6	633	0.0660	1.23		Lag/CN Method,			

Summary for Subcatchment S-3P: SUB 3P TO FOREBAY 1

Runoff = 6.14 cfs @ 12.08 hrs, Volume= Routed to Pond 5P : FOREBAY 1 & WET POND 0.414 af, Depth= 1.34"

Area	(ac) (CN De	escription		
1	.525	80 >7	5% Grass c	over, Good	, HSG D
2	.182	98 Pa	ved parking	, HSG D	
3	.707	91 W	eighted Ave	rage	
1	.525	41	.14% Pervic	us Area	
2	.182	58	.86% Imper	vious Area	
Tc	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/f	i) (ft/sec)	(cfs)	
16.1	1,531	0.035	0 1.59		Lag/CN Method,
					0 <i>i</i>

Summary for Subcatchment S-4P: SUB 4P TO FOREBAY 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 11.95 cfs @ 11.94 hrs, Volume= Routed to Pond 9P : FOREBAY 3 0.593 af, Depth= 1.87"

(ac)	CN	Desc	ription		
.241	80	>75%	6 Grass co	over, Good	, HSG D
.571	98	Pave	d parking,	HSG D	
.812	97	Weig	hted Aver	age	
.241		6.32	% Perviou	s Area	
.571		93.68	3% Imperv	vious Area	
	_			•	
0			,		Description
(feet	()	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
52	0.0)560	2.17		Lag/CN Method,
	(feet	.241 80 .571 98 .812 97 .241 .571 Length S (feet)	.241 80 >75% .571 98 Pave .812 97 Weig .241 6.326 .571 93.68 Length Slope (feet) (ft/ft)	.241 80 >75% Grass co .571 98 Paved parking, .812 97 Weighted Aver .241 6.32% Perviou .571 93.68% Imperv Length Slope Velocity (feet) (ft/ft) (ft/sec)	.24180>75% Grass cover, Good.57198Paved parking, HSG D.81297Weighted Average.2416.32% Pervious Area.57193.68% Impervious AreaLengthSlopeVelocity(feet)(ft/ft)(ft/sec)(cfs)

Summary for Reach 1R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	21.516 ac,	0.00% Impervious, Inflow	Depth = 0.69"	for 1 yr (Cpv) event
Inflow	=	17.99 cfs @	12.07 hrs, Volume=	1.234 af	
Outflow	=	17.99 cfs @	12.07 hrs, Volume=	1.234 af, Atte	en= 0%, Lag= 0.0 min

Summary for Reach 2R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 11.168 ac, 0.00% Impervious, Inflow Depth = 0.69" for 1 yr (Cpv) event

 Inflow =
 8.94 cfs @
 12.10 hrs, Volume=
 0.640 af

 Outflow =
 8.94 cfs @
 12.10 hrs, Volume=
 0.640 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 1R : OFFSITE
 0.640 af, Atten= 0%, Lag= 0.0 min

Summary for Reach 7R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	21.516 ac, 58.45% Impervious, Inflow Depth = 1.61" for 1 yr (Cpv) event	
Inflow	=	1.74 cfs @ 11.94 hrs, Volume= 2.894 af	
Outflow	=	1.74 cfs @ 11.94 hrs, Volume= 2.894 af, Atten= 0%, Lag= 0.0 min	I

Summary for Reach 8R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 17.102 ac, 72.94% Impervious, Inflow Depth =
 1.85" for 1 yr (Cpv) event

 Inflow =
 10.32 cfs @
 12.31 hrs, Volume=
 2.641 af

 Outflow =
 10.32 cfs @
 12.31 hrs, Volume=
 2.641 af

 Routed to Reach 7R : OFFSITE
 0
 0
 0

Summary for Pond 5P: FOREBAY 1 & WET POND

Inflow Area	a =	17.102 ac, 7	2.94% Imperv	vious, Inflow D	Depth = 1.85"	for 1 yr (Cpv) event
Inflow	=	29.83 cfs @	12.02 hrs, V	′olume=	2.642 af	
Outflow	=	10.32 cfs @	12.31 hrs, V	′olume=	2.641 af, Atte	en= 65%, Lag= 17.3 min
Primary	=	10.32 cfs @	12.31 hrs, V	′olume=	2.641 af	
Routed	to Rea	ach 8R : ONSI	re wetland)		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 475.00' Surf.Area= 6,000 sf Storage= 22,390 cf Peak Elev= 477.22' @ 12.31 hrs Surf.Area= 23,524 sf Storage= 53,498 cf (31,108 cf above start)

Plug-Flow detention time= 305.8 min calculated for 2.080 af (79% of inflow) Center-of-Mass det. time= 49.9 min (724.7 - 674.8)

Volume	Inve	rt Avail.Sto	rage Storage [Description	
#1	468.0	0' 171,72	28 cf Custom	Stage Data (Pr	smatic)Listed below (Recalc)
Elevatio	n	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
468.0		1,610	0	0	
469.0		2,000	1,805	1,805	
470.0		2,410	2,205	4,010	
471.0		2,840	2,625	6,635	
472.0		3,290	3,065	9,700	
473.0		3,770	3,530	13,230	
474.0		4,275	4,023	17,253	
475.0		6,000	5,138	22,390	
476.0		11,675	8,838	31,228	
477.0		22,610	17,143	48,370	
478.0	00	26,720	24,665	73,035	
479.0	00	30,590	28,655	101,690	
480.0	00	35,215	32,903	134,593	
481.0	00	39,055	37,135	171,728	
Device	Routing	Invert	Outlet Devices		
#1	Device 4	480.00'	48.0" Horiz. O	rifice/Grate C	= 0.600
			Limited to weir	flow at low hea	ds
#2	Device 4	478.00'	3.0' long x 0.7	5' rise Sharp-C	rested Rectangular Weir
			2 End Contract	tion(s)	
#3	Device 4	475.00'	18.0" Round		
					onforming to fill, Ke= 0.500
					175.00' S= -0.1053 '/' Cc= 0.900
					r, Flow Area= 1.77 sf
#4	Primary	475.00'	24.0" Round		
				,	onforming to fill, Ke= 0.500
					174.00' S= 0.0263 '/' Cc= 0.900
			n= 0.010 PVC	, smooth interio	r, Flow Area= 3.14 sf

Primary OutFlow Max=10.32 cfs @ 12.31 hrs HW=477.22' TW=0.00' (Dynamic Tailwater)

-4=Culvert (Passes 10.32 cfs of 16.71 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs) 2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Culvert (Inlet Controls 10.32 cfs @ 5.84 fps)

Summary for Pond 6P: FOREBAY 2

[44] Hint: Outlet device #2 is below defined storage[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=117)

Inflow Area =	9.583 ac, 7	0.13% Impervious, Inflow	Depth = 1.50" for 1	yr (Cpv) event
Inflow =	18.06 cfs @	12.07 hrs, Volume=	1.197 af	
Outflow =	21.75 cfs @	0.00 hrs, Volume=	1.635 af, Atten= 0%	,Lag= 0.0 min
Discarded =	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Primary =	21.75 cfs @	0.00 hrs, Volume=	1.635 af	
Routed to Por	nd 5P : FOREB	AY 1 & WET POND		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 6,200 sf Storage= 16,298 cf Peak Elev= 488.00' @ 0.00 hrs Surf.Area= 6,200 sf Storage= 16,298 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inver	t Avail.Sto	rage Storage	Description		
#1	484.00	' 40,67	73 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)	
Flovetic		urf Araa	Ina Stara	Cum Store		
Elevatio		urf.Area	Inc.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)		
484.0	00	2,205	0	0		
485.0	00	3,040	2,623	2,623		
486.0	00	4,000	3,520	6,143		
487.0	00	5,055	4,528	10,670		
488.0	00	6,200	5,628	16,298		
489.0	00	7,445	6,823	23,120		
490.0	00	8,770	8,108	31,228		
491.0	00	10,120	9,445	40,673		
Device	Routing	Invert	Outlet Device	S		
#1	Discarded	488.00'	32.0" Horiz. (Orifice/Grate	C= 0.600	
			Limited to we	ir flow at low he	ads	
#2	Primary	480.00'	18.0" Round	l Culvert		
			L= 156.0' RC	CP, end-section	conforming to fill, Ke= 0.500	
					479.00' S= 0.0064 '/' Cc= 0.900	
			n= 0.010 PVC, smooth interior, Flow Area= 1.77 sf			

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=488.00' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs)

Primary OutFlow Max=21.75 cfs @ 0.00 hrs HW=488.00' TW=475.28' (Dynamic Tailwater) ←2=Culvert (Barrel Controls 21.75 cfs @ 12.31 fps)

Summary for Pond 9P: FOREBAY 3

Inflow Area	a =	3.812 ac, 🤉	3.68% Impervious, Inf	low Depth = 1.87" for 1 yr (Cpv) event
Inflow	=	11.95 cfs @	11.94 hrs, Volume=	0.593 af
Outflow	=	9.59 cfs @	11.99 hrs, Volume=	0.593 af, Atten= 20%, Lag= 2.9 min
Primary	=	9.59 cfs @	11.99 hrs, Volume=	0.593 af
Routed	to Pon	d 5P : FOREE	AY 1 & WET POND	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 5,680 sf Storage= 14,085 cf Peak Elev= 488.60' @ 11.99 hrs Surf.Area= 6,390 sf Storage= 17,717 cf (3,632 cf above start)

Plug-Flow detention time= 273.8 min calculated for 0.270 af (45% of inflow) Center-of-Mass det. time= 14.8 min (785.7 - 770.9)

Volume	Inve	rt Avail.Sto	rage Storage	e Description	
#1	484.00	D' 27,83	33 cf Custon	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	on s	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
484.0	00	1,510	0	0	
485.0	00	2,445	1,978	1,978	
486.0	00	3,490	2,968	4,945	
487.0	0	4,555	4,023	8,968	
488.0	0	5,680	5,118	14,085	
489.0	00	6,860	6,270	20,355	
490.0	00	8,095	7,478	27,833	
Device	Routing	Invert	Outlet Device	s	
#1	Device 2	488.00'	24.0" Horiz.	Orifice/Grate	C= 0.600
			Limited to we	ir flow at low hea	ads
#2	Primary	482.00'	18.0" Round		
					conforming to fill, Ke= 0.500
					477.00' S= 0.0296 '/' Cc= 0.900
			n= 0.010 PV	C, smooth interio	or, Flow Area= 1.77 sf

Primary OutFlow Max=9.40 cfs @ 11.99 hrs HW=488.59' TW=476.49' (Dynamic Tailwater) **2=Culvert** (Passes 9.40 cfs of 20.57 cfs potential flow)

1=Orifice/Grate (Weir Controls 9.40 cfs @ 2.52 fps)

DGC025_HydroCAD Prepared by Elan Design Lab, Inc HydroCAD® 10.20-2f s/n 07437 © 2022 Hydro		<i>10 yr (Qp) Rainfall=3.75"</i> Printed 8/30/2022 Page 23
Runoff by SCS TF	48.00 hrs, dt=0.05 hrs, 961 points x R-20 method, UH=SCS, Weighted-0 I method - Pond routing by Dyn-Si	CN
Subcatchment S-1E: SUB 1 TO OFFSITE Flow Length=764'	Runoff Area=8.472 ac 0.00% Im Slope=0.0430 '/' Tc=12.4 min CN=8	
Subcatchment S-1P: SUB 1P TO OFFSITE Flow Length=104'	Runoff Area=4.414 ac 2.31% Im Slope=0.1540 '/' Tc=1.3 min CN=8	
Subcatchment S-2E: SUB 2 TO ONSITE Flow Length=1,273'	Runoff Area=11.168 ac 0.00% Im Slope=0.0540 '/' Tc=16.6 min CN=8	• •
Subcatchment S-2P: SUB 2P TO FOREBA Flow Length=1,620'	∖Y Runoff Area=9.583 ac 70.13% Im Slope=0.0360 '/' Tc=15.2 min CN=9	
Subcatchment S-3E: SUB 3 TO OFFSITE Flow Length=633	Runoff Area=1.876 ac 0.00% Im 3' Slope=0.0660 '/' Tc=8.6 min CN=	• •
Subcatchment S-3P: SUB 3P TO FOREBA Flow Length=1,531'	∖Y Runoff Area=3.707 ac 58.86% Im Slope=0.0350 '/' Tc=16.1 min CN=9	
Subcatchment S-4P: SUB 4P TO FOREBA Flow Length=520'	Y Runoff Area=3.812 ac 93.68% Im Slope=0.0560 '/' Tc=4.0 min CN=9	
Reach 1R: OFFSITE		Inflow=50.38 cfs 3.294 af Outflow=50.38 cfs 3.294 af
Reach 2R: ONSITE WETLAND		Inflow=25.06 cfs 1.710 af Outflow=25.06 cfs 1.710 af
Reach 7R: OFFSITE		Inflow=24.47 cfs 5.445 af Outflow=24.47 cfs 5.445 af
Reach 8R: ONSITE WETLAND		Inflow=17.11 cfs 4.769 af Outflow=17.11 cfs 4.769 af
Pond 5P: FOREBAY 1 & WET POND	Peak Elev=478.47' Storage=86,052	cf Inflow=44.78 cfs 4.771 af Outflow=17.11 cfs 4.769 af
Pond 6P: FOREBAY 2 Discarded=0.00 cfs	Peak Elev=488.00' Storage=16,298 0.000 af Primary=21.75 cfs 2.832 a	
Pond 9P: FOREBAY 3	Peak Elev=488.98' Storage=20,207	′ cf Inflow=20.97 cfs 1.081 af Outflow=14.96 cfs 1.081 af
	ac Runoff Volume = 8.286 af A .78% Pervious = 30.456 ac 29.3	

70.78% Pervious = 30.456 ac 29.22% Impervious = 12.576 ac

Summary for Subcatchment S-1E: SUB 1 TO OFFSITE WETLAND

Runoff = 21.82 cfs @ 12.05 hrs, Volume= Routed to Reach 1R : OFFSITE 1.297 af, Depth= 1.84"

Area	(ac) C	N Des	cription					
8.	.472 8	30 >75°	% Grass co	over, Good,	, HSG D			
8.	8.472 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
12.4	764	0.0430	1.03		Lag/CN Method,			

Summary for Subcatchment S-1P: SUB 1P TO OFFSITE

[49] Hint: Tc<2dt may require smaller dt

Runoff = 15.92 cfs @ 11.91 hrs, Volume= Routed to Reach 7R : OFFSITE 0.676 af, Depth= 1.84"

Area	(ac) (CN Des	scription						
4.	.312	80 >75	>75% Grass cover, Good, HSG D						
0.102 98 Paved parking, HSG D									
4.414 80 Weighted Average									
4.	.312	97.	69% Pervio	us Area					
0.	.102	2.3	1% Impervi	ous Area					
Tc (min)	Length	Slope (ft/ft)		Capacity (cfs)	Description				
(min)	(feet)		(ft/sec)	(CIS)					
1.3	104	0.1540	1.31		Lag/CN Method,				

Summary for Subcatchment S-2E: SUB 2 TO ONSITE WETLAND

Runoff = 25.06 cfs @ 12.09 hrs, Volume= Routed to Reach 2R : ONSITE WETLAND 1.710 af, Depth= 1.84"

Area	(ac)	CN I	Desc	ription						
11	.168	80 :	>75%	>75% Grass cover, Good, HSG D						
11	11.168 100.00% Pervious Area									
Tc (min)	Length (feet)		ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
16.6	1,273	0.05	540	1.28		Lag/CN Method,				

Summary for Subcatchment S-2P: SUB 2P TO FOREBAY 2

Runoff = 34.75 cfs @ 12.07 hrs, Volume= Routed to Pond 6P : FOREBAY 2 2.377 af, Depth= 2.98"

Area ((ac) C	N Des	Description						
2.8	862	30 >75	% Grass co	over, Good	HSG D				
5.2	252	98 Pav	ed parking	, HSG D					
3.0	836	98 Roc	fs, HSG D						
0.6	633	98 Pav	ed parking	, HSG D					
9.8	583	93 Wei	ghted Aver	age					
2.8	2.862 29.87% Pervious Area								
6.7	6.721 70.			70.13% Impervious Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
15.2	1,620	0.0360	1.78		Lag/CN Method,				

Summary for Subcatchment S-3E: SUB 3 TO OFFSITE

Runoff = 5.52 cfs @ 12.00 hrs, Volume= 0.287 af, Depth= 1.84" Routed to Reach 1R : OFFSITE

Area (a	ic) Cl	N Desc	cription				
1.87	76 8	0 >75%	% Grass co	over, Good,	, HSG D		
1.87	1.876 100.00% Pervious Area						
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
8.6	633	0.0660	1.23		Lag/CN Method,		

Summary for Subcatchment S-3P: SUB 3P TO FOREBAY 1

Runoff = 12.42 cfs @ 12.08 hrs, Volume= Routed to Pond 5P : FOREBAY 1 & WET POND 0.858 af, Depth= 2.78"

Area	(ac) (CN De	escription			
1	.525	80 >7	5% Grass c	over, Good	, HSG D	
2.182 98 Paved parking, HSG D						
3	.707	91 W	eighted Ave	rage		
1	.525	41	.14% Pervic	us Area		
2	.182	58	.86% Imper	vious Area		
Tc	Length	Slop	e Velocity	Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
16.1	1,531	0.035	0 1.59		Lag/CN Method,	
					0 <i>i</i>	

Summary for Subcatchment S-4P: SUB 4P TO FOREBAY 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 20.97 cfs @ 11.94 hrs, Volume= 1.081 af, Depth= 3.40" Routed to Pond 9P : FOREBAY 3

>75% Grass cover, Good, HSG D						
-						

Summary for Reach 1R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	21.516 ac,	0.00% Impervious, Inflow E	Depth = 1.84" for 10 yr (Qp) event
Inflow	=	50.38 cfs @	12.06 hrs, Volume=	3.294 af
Outflow	=	50.38 cfs @	12.06 hrs, Volume=	3.294 af, Atten= 0%, Lag= 0.0 min

Summary for Reach 2R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 11.168 ac, 0.00% Impervious, Inflow Depth =
 1.84" for 10 yr (Qp) event

 Inflow =
 25.06 cfs @
 12.09 hrs, Volume=
 1.710 af

 Outflow =
 25.06 cfs @
 12.09 hrs, Volume=
 1.710 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 1R : OFFSITE
 0
 0

Summary for Reach 7R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	21.516 ac, 58.45% Impervious, Inflow Depth =	3.04" for 10 yr (Qp) event
Inflow	=	24.47 cfs @ 11.92 hrs, Volume= 5.445 a	af
Outflow	=	24.47 cfs @ 11.92 hrs, Volume= 5.445 a	af, Atten= 0%, Lag= 0.0 min

Summary for Reach 8R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 17.102 ac, 72.94% Impervious, Inflow Depth =
 3.35" for 10 yr (Qp) event

 Inflow =
 17.11 cfs @
 12.54 hrs, Volume=
 4.769 af

 Outflow =
 17.11 cfs @
 12.54 hrs, Volume=
 4.769 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 7R : OFFSITE
 0
 0
 0

Summary for Pond 5P: FOREBAY 1 & WET POND

Inflow Area	a =	17.102 ac, 7	72.94% Impervious,	Inflow Depth = 3.35" for 10 yr (Qp) event
Inflow	=	44.78 cfs @	12.05 hrs, Volume=	= 4.771 af
Outflow	=	17.11 cfs @	12.54 hrs, Volume=	4.769 af, Atten= 62%, Lag= 29.2 min
Primary	=	17.11 cfs @	12.54 hrs, Volume=	= 4.769 af
Routed	to Rea	ach 8R : ONSI	TE WETLAND	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 475.00' Surf.Area= 6,000 sf Storage= 22,390 cf Peak Elev= 478.47' @ 12.54 hrs Surf.Area= 28,543 sf Storage= 86,052 cf (63,662 cf above start)

Plug-Flow detention time= 202.2 min calculated for 4.211 af (88% of inflow) Center-of-Mass det. time= 52.8 min (771.2 - 718.4)

Volume	Inve	ert Avail.Sto	rage Storage	e Description	
#1	468.0	0' 171,72	28 cf Custom Stage Data (Prismatic)Listed below (Recalc)		
Elevatio	22	Surf.Area	Inc.Store	Cum.Store	
fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
	/		- · · · · · · · · · · · · · · · · · · ·		
468.0		1,610	0	0	
469.0		2,000	1,805	1,805	
470.0		2,410	2,205	4,010	
471.0		2,840	2,625	6,635	
472.0		3,290	3,065	9,700	
473.0		3,770	3,530	13,230	
474.0		4,275	4,023	17,253	
475.0		6,000	5,138	22,390	
476.0		11,675	8,838	31,228	
477.0		22,610	17,143	48,370	
478.0		26,720	24,665	73,035	
479.0	.00 30,590		28,655	101,690	
480.0		35,215	32,903	134,593	
481.0	00	39,055	37,135	171,728	
D .					
Device	Routing	Invert			
#1	Device 4	480.00'		Orifice/Grate C	
				eir flow at low hea	
#2	Device 4	478.00'			Crested Rectangular Weir
			2 End Contra		
#3	Device 4	475.00'	18.0" Roun		
					onforming to fill, Ke= 0.500
			Inlet / Outlet	Invert= 471.00' /	475.00' S= -0.1053 '/' Cc= 0.900
			n= 0.010 P∖	/C, smooth interior	or, Flow Area= 1.77 sf
#4	Primary	475.00'	24.0" Roun	d Culvert	
	-		L= 38.0' RC	P, end-section co	onforming to fill, Ke= 0.500
			Inlet / Outlet	Invert= 475.00' /	474.00' S= 0.0263 '/' Cc= 0.900
			n= 0.010 P∖	C, smooth interio	r, Flow Area= 3.14 sf

Primary OutFlow Max=17.06 cfs @ 12.54 hrs HW=478.47' TW=0.00' (Dynamic Tailwater)

-**4=Culvert** (Passes 17.06 cfs of 23.76 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs) **2=Sharp-Crested Rectangular Weir** (Weir Controls 3.03 cfs @ 2.23 fps)

-3=Culvert (Inlet Controls 14.03 cfs @ 7.94 fps)

Summary for Pond 6P: FOREBAY 2

[44] Hint: Outlet device #2 is below defined storage[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=116)

Inflow Area =	9.583 ac, 7	0.13% Impervious, Inflow	Depth = 2.98" for 10 yr (Qp) event				
Inflow =	34.75 cfs @	12.07 hrs, Volume=	2.377 af				
Outflow =	21.75 cfs @	0.00 hrs, Volume=	2.832 af, Atten= 37%, Lag= 0.0 min				
Discarded =	0.00 cfs @	0.00 hrs, Volume=	0.000 af				
Primary =	21.75 cfs @	0.00 hrs, Volume=	2.832 af				
Routed to Pond 5P : FOREBAY 1 & WET POND							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 6,200 sf Storage= 16,298 cf Peak Elev= 488.00' @ 0.00 hrs Surf.Area= 6,200 sf Storage= 16,298 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Sto	rage Storage	Description				
#1	484.00'	40,67	73 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)			
Flovetia		urf Area	Ino Store	Cum Store				
Elevatio		urf.Area	Inc.Store	Cum.Store				
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)				
484.0	0	2,205	0	0				
485.0	0	3,040	2,623	2,623				
486.0	0	4,000	3,520	6,143				
487.0	0	5,055	4,528	10,670				
488.0	0	6,200	5,628	16,298				
489.0	0	7,445	6,823	23,120				
490.0	0	8,770	8,108	31,228				
491.0	0	10,120	9,445	40,673				
Device	Routing	Invert	Outlet Device	S				
#1	Discarded	488.00'	32.0" Horiz. (Drifice/Grate	C= 0.600			
			Limited to wei	r flow at low hea	ads			
#2	Primary	480.00'	18.0" Round Culvert					
	,			L= 156.0' RCP, end-section conforming to fill, Ke= 0.500				
Inlet / Outlet Invert= 480.00' / 479.00' S= 0.0064 '/' Cc= (
n=0.010 PVC, smooth interior, Flow Area= 1.77 sf								
					or, 110w/110a-1.77 St			

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=488.00' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs)

Primary OutFlow Max=21.75 cfs @ 0.00 hrs HW=488.00' TW=475.28' (Dynamic Tailwater) ←2=Culvert (Barrel Controls 21.75 cfs @ 12.31 fps)

Summary for Pond 9P: FOREBAY 3

Inflow Area	a =	3.812 ac, 🤉	3.68% Impervious,	Inflow Depth =	3.40" fo	r 10 yr (Qp) event
Inflow	=	20.97 cfs @	11.94 hrs, Volume	= 1.081	af	,
Outflow	=	14.96 cfs @	12.00 hrs, Volume	= 1.081	af, Atten=	29%, Lag= 3.5 min
Primary	=	14.96 cfs @	12.00 hrs, Volume	= 1.081	af	
Routed	to Pon	d 5P : FOREE	BAY 1 & WET PONE)		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 5,680 sf Storage= 14,085 cf Peak Elev= 488.98' @ 12.00 hrs Surf.Area= 6,834 sf Storage= 20,207 cf (6,122 cf above start)

Plug-Flow detention time= 181.2 min calculated for 0.757 af (70% of inflow) Center-of-Mass det. time= 12.6 min (769.1 - 756.5)

Volume	Inver	t Avail.Sto	brage Storage Description		
#1	484.00)' 27,83	33 cf Cust	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
484.0	00	1,510	0	0	
485.0	00	2,445	1,978	1,978	
486.0	00	3,490	2,968	4,945	
487.0	00	4,555	4,023	8,968	
488.0	00	5,680	5,118	14,085	
489.0	00	6,860	6,270	20,355	
490.0	00	8,095	7,478	27,833	
Device	Routing	Invert	Outlet Dev	vices	
#1	Device 2	488.00'	24.0" Hori	z. Orifice/Grate	C= 0.600
			Limited to	weir flow at low hea	ads
#2	Primary	482.00'	18.0" Rou	und Culvert	
	,		L= 169.0'	RCP, end-section	conforming to fill, Ke= 0.500
					477.00' Š= 0.0296 '/' Cc= 0.900
				PVC, smooth interi	or, Flow Area= 1.77 sf
				-,	,

Primary OutFlow Max=14.95 cfs @ 12.00 hrs HW=488.98' TW=477.18' (Dynamic Tailwater) **2=Culvert** (Passes 14.95 cfs of 21.23 cfs potential flow)

1=Orifice/Grate (Orifice Controls 14.95 cfs @ 4.76 fps)

DGC025_HydroCAD Prepared by Elan Design Lab, Inc HydroCAD® 10.20-2f s/n 07437 © 2022 Hydro	<i>Type II 24-hr 100 yr (Qf) Rainfall=6.50"</i> Printed 8/30/2022 oCAD Software Solutions LLC Page 39
Runoff by SCS TI	48.00 hrs, dt=0.05 hrs, 961 points x 3 R-20 method, UH=SCS, Weighted-CN d method . Pond routing by Dyn-Stor-Ind method
Subcatchment S-1E: SUB 1 TO OFFSITE Flow Length=764'	Runoff Area=8.472 ac 0.00% Impervious Runoff Depth=4.24" Slope=0.0430 '/' Tc=12.4 min CN=80 Runoff=49.58 cfs 2.990 af
Subcatchment S-1P: SUB 1P TO OFFSIT Flow Length=104	E Runoff Area=4.414 ac 2.31% Impervious Runoff Depth=4.24" ' Slope=0.1540 '/' Tc=1.3 min CN=80 Runoff=35.61 cfs 1.558 af
Subcatchment S-2E: SUB 2 TO ONSITE Flow Length=1,273'	Runoff Area=11.168 ac 0.00% Impervious Runoff Depth=4.24" Slope=0.0540 '/' Tc=16.6 min CN=80 Runoff=57.36 cfs 3.942 af
	AY Runoff Area=9.583 ac 70.13% Impervious Runoff Depth=5.68" Slope=0.0360 '/' Tc=15.2 min CN=93 Runoff=63.91 cfs 4.533 af
Subcatchment S-3E: SUB 3 TO OFFSITE Flow Length=633	Runoff Area=1.876 ac 0.00% Impervious Runoff Depth=4.24" Slope=0.0660 '/' Tc=8.6 min CN=80 Runoff=12.46 cfs 0.662 af
	AY Runoff Area=3.707 ac 58.86% Impervious Runoff Depth=5.45" Slope=0.0350 '/' Tc=16.1 min CN=91 Runoff=23.51 cfs 1.683 af
	AY Runoff Area=3.812 ac 93.68% Impervious Runoff Depth=6.14" ' Slope=0.0560 '/' Tc=4.0 min CN=97 Runoff=36.80 cfs 1.951 af
Reach 1R: OFFSITE	Inflow=115.17 cfs 7.594 af Outflow=115.17 cfs 7.594 af
Reach 2R: ONSITE WETLAND	Inflow=57.36 cfs 3.942 af Outflow=57.36 cfs 3.942 af
Reach 7R: OFFSITE	Inflow=46.66 cfs 9.690 af Outflow=46.66 cfs 9.690 af
Reach 8R: ONSITE WETLAND	Inflow=27.27 cfs 8.132 af Outflow=27.27 cfs 8.132 af
Pond 5P: FOREBAY 1 & WET POND	Peak Elev=479.46' Storage=116,322 cf Inflow=66.45 cfs 8.134 af Outflow=27.27 cfs 8.132 af
Pond 6P: FOREBAY 2 Discarded=28.48 cfs	Peak Elev=489.12' Storage=24,032 cf Inflow=63.91 cfs 4.533 af s 0.479 af Primary=23.32 cfs 4.499 af Outflow=51.80 cfs 4.979 af
Pond 9P: FOREBAY 3	Peak Elev=489.92' Storage=27,192 cf Inflow=36.80 cfs 1.951 af Outflow=20.97 cfs 1.951 af
Total Runoff Area = 43.032 a	ac Runoff Volume = 17.319 af Average Runoff Depth = 4.83" 0 78% Pervious = 30 456 ac 29 22% Impervious = 12 576 ac

70.78% Pervious = 30.456 ac 29.22% Impervious = 12.576 ac

Summary for Subcatchment S-1E: SUB 1 TO OFFSITE WETLAND

Runoff = 49.58 cfs @ 12.04 hrs, Volume= Routed to Reach 1R : OFFSITE 2.990 af, Depth= 4.24"

Area	(ac) C	N Dese	cription						
8.	472 8	30 >75 ^c	>75% Grass cover, Good, HSG D						
8.	8.472 100.00% Pervious Area								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
12.4	764	0.0430	1.03		Lag/CN Method,				

Summary for Subcatchment S-1P: SUB 1P TO OFFSITE

[49] Hint: Tc<2dt may require smaller dt

Runoff = 35.61 cfs @ 11.90 hrs, Volume= 1.558 Routed to Reach 7R : OFFSITE

1.558 af, Depth= 4.24"

Area	(ac) (CN Des	Description					
4	.312	80 >75	•75% Grass cover, Good, HSG D					
0	.102	98 Pa\	aved parking, HSG D					
4	4.414 80 Weighted Average							
4	.312	97.	69% Pervio	us Area				
0	.102	2.3	1% Impervi	ous Area				
Tc	Length		,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.3	104	0.1540	1.31		Lag/CN Method,			
1.3	104	0.1540	1.31	\$ F	Lag/CN Method,			

Summary for Subcatchment S-2E: SUB 2 TO ONSITE WETLAND

Runoff = 57.36 cfs @ 12.09 hrs, Volume= Routed to Reach 2R : ONSITE WETLAND 3.942 af, Depth= 4.24"

Area	(ac)	CN D	escriptio	n					
11	.168	80 >	75% Grass cover, Good, HSG D						
11	11.168 100.00% Pervious Area								
Tc (min)	Length (feet)				Capacity (cfs)	Description			
16.6	1,273	0.054	10 1	.28		Lag/CN Method,			

Summary for Subcatchment S-2P: SUB 2P TO FOREBAY 2

Runoff = 63.91 cfs @ 12.06 hrs, Volume= Routed to Pond 6P : FOREBAY 2 4.533 af, Depth= 5.68"

Area ((ac) (CN D	escription		
2.8	862	80 >	75% Grass c	over, Good	I, HSG D
5.2	252	98 P	aved parking	, HSG D	
0.8	836	98 R	oofs, HSG D		
0.0	633	98 P	aved parking	, HSG D	
9.8	583	93 W	eighted Ave	rage	
2.8	862	29	9.87% Pervic	ous Area	
6.7	6.721 70.13% Impervious Area			vious Area	
Тс	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/	t) (ft/sec)	(cfs)	
15.2	1,620	0.036	0 1.78		Lag/CN Method,

Summary for Subcatchment S-3E: SUB 3 TO OFFSITE

Runoff = 12.46 cfs @ 12.00 hrs, Volume= Routed to Reach 1R : OFFSITE

0.662 af, Depth= 4.24"

Area	(ac) C	N Dese	cription					
1.	876 8	30 >75 ^c	% Grass co	over, Good,	, HSG D			
1.	1.876 100.00% Pervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
8.6	633	0.0660	1.23		Lag/CN Method,			

Summary for Subcatchment S-3P: SUB 3P TO FOREBAY 1

Runoff = 23.51 cfs @ 12.07 hrs, Volume= Routed to Pond 5P : FOREBAY 1 & WET POND 1.683 af, Depth= 5.45"

Area	a (ac)	CΝ	l Desc	cription		
	1.525	80) >75%	% Grass co	over, Good	, HSG D
	2.182	98	B Pave	ed parking,	HSG D	
	3.707	91	1 Weig	ghted Aver	age	
	1.525		41.1	4% Pervio	us Area	
2	2.182		58.8	6% Imperv	vious Area	
_			~		•	_
To	5		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
16.1	1,53	31	0.0350	1.59		Lag/CN Method,
						-

Summary for Subcatchment S-4P: SUB 4P TO FOREBAY 3

[49] Hint: Tc<2dt may require smaller dt

Runoff = 36.80 cfs @ 11.94 hrs, Volume= 1.951 af, Depth= 6.14" Routed to Pond 9P : FOREBAY 3

_	Area	(ac) (CN Des	scription		
	0.	241	80 >75	5% Grass c	over, Good	1, HSG D
	3.	571	98 Pav	ed parking	, HSG D	
	3.	812	97 We	ighted Aver	age	
	0.	241	6.3	2% Perviou	s Area	
	3.	571	93.	68% Imperv	/ious Area	
	т.	1			0	Description
		0				Description
	(min)	(feet)	(ft/ft)	(tt/sec)	(cfs)	
	4.0	520	0.0560	2.17		Lag/CN Method,
_	0. 3. Tc (min)	241 571 Length (feet)	6.3 93. Slope (ft/ft)	2% Perviou 58% Imperv Velocity (ft/sec)	s Area	Description

Summary for Reach 1R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		21.516 ac,	0.00% Impervious,	Inflow Depth = 4.24	for 100 yr (Qf) event
Inflow	=	115.17 cfs @	12.05 hrs, Volume	= 7.594 af	
Outflow	=	115.17 cfs @	12.05 hrs, Volume	= 7.594 af, A	tten= 0%, Lag= 0.0 min

Summary for Reach 2R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 11.168 ac, 0.00% Impervious, Inflow Depth = 4.24" for 100 yr (Qf) event

 Inflow =
 57.36 cfs @
 12.09 hrs, Volume=
 3.942 af

 Outflow =
 57.36 cfs @
 12.09 hrs, Volume=
 3.942 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 1R : OFFSITE
 0
 0

Summary for Reach 7R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	21.516 ac, 58.45% Impervious,	Inflow Depth = 5.40" for 100 yr (Qf) event
Inflow =	46.66 cfs @ 11.91 hrs, Volume	= 9.690 af
Outflow =	46.66 cfs @ 11.91 hrs, Volume	= 9.690 af, Atten= 0%, Lag= 0.0 min

Summary for Reach 8R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

 Inflow Area =
 17.102 ac, 72.94% Impervious, Inflow Depth =
 5.71" for 100 yr (Qf) event

 Inflow =
 27.27 cfs @
 12.54 hrs, Volume=
 8.132 af

 Outflow =
 27.27 cfs @
 12.54 hrs, Volume=
 8.132 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach 7R : OFFSITE
 OFFSITE
 0.0 min

Summary for Pond 5P: FOREBAY 1 & WET POND

[95] Warning: Outlet Device #2 rise exceeded

Inflow Are	a =	17.102 ac, 72.94% Impervious, Inflow Depth = 5.71" for 100 yr (Qf) ev	vent				
Inflow	=	66.45 cfs @ 12.07 hrs, Volume= 8.134 af					
Outflow	=	27.27 cfs @ 12.54 hrs, Volume= 8.132 af, Atten= 59%, Lag= 28	3.1 min				
Primary	=	27.27 cfs @ 12.54 hrs, Volume= 8.132 af					
Routed to Reach 8R : ONSITE WETLAND							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 475.00' Surf.Area= 6,000 sf Storage= 22,390 cf Peak Elev= 479.46' @ 12.54 hrs Surf.Area= 32,728 sf Storage= 116,322 cf (93,932 cf above start)

Plug-Flow detention time= 143.1 min calculated for 7.574 af (93% of inflow) Center-of-Mass det. time= 50.6 min (787.2 - 736.6)

Volume	Inve	rt Avail.Sto	rage Storage Description					
#1 468.00' 171,72		28 cf Custom	Stage Data (Prismat	tic)Listed below (Rec	calc)			
Elevatio	an (Surf.Area	Inc.Store	Cum.Store				
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)				
468.0		1,610	0	0				
469.0		2,000	1,805	1,805				
470.0		2,410	2,205	4,010				
471.0		2,840	2,625	6,635				
472.0		3,290	3,065	9,700				
473.0		3,770	3,530	13,230				
474.0		4,275	4,023	17,253				
475.0	00	6,000	5,138	22,390				
476.0	00	11,675	8,838	31,228				
477.0	00	22,610	17,143	48,370				
478.0	00	26,720	24,665	73,035				
479.0	00	30,590	28,655	101,690				
480.0	00	35,215	32,903	134,593				
481.0	00	39,055	37,135	171,728				
Device	Routing	Invert	Outlet Devices	;				
#1	Device 4	480.00'	48.0" Horiz. C	prifice/Grate C= 0.60	00			
			Limited to wei	flow at low heads				
#2	Device 4	478.00'	3.0' long x 0.7	'5' rise Sharp-Creste	ed Rectangular Weir	r		
			2 End Contrac	tion(s)	•			
#3	Device 4	475.00'	18.0" Round	Culvert				
				, end-section conforn				
				vert= 471.00' / 475.00		c= 0.900		
				, smooth interior, Flo	ow Area= 1.77 sf			
#4	Primary	475.00'		24.0" Round Culvert				
				, end-section conforn				
				vert= 475.00' / 474.00		= 0.900		
			n= 0.010 PVC	, smooth interior, Flo	ow Area= 3.14 sf			

Primary OutFlow Max=27.26 cfs @ 12.54 hrs HW=479.46' TW=0.00' (Dynamic Tailwater)

-4=Culvert (Passes 27.26 cfs of 28.14 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs) **2=Sharp-Crested Rectangular Weir** (Orifice Controls 10.87 cfs @ 5.09 fps)

-3=Culvert (Inlet Controls 16.39 cfs @ 9.28 fps)

Summary for Pond 6P: FOREBAY 2

[44] Hint: Outlet device #2 is below defined storage[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=113)

Inflow Area =	9.583 ac, 70.13% Impervious, Inflow	Depth = 5.68" for 100 yr (Qf) event					
Inflow =	63.91 cfs @ 12.06 hrs, Volume=	4.533 af					
Outflow =	51.80 cfs @ 12.15 hrs, Volume=	4.979 af, Atten= 19%, Lag= 5.0 min					
Discarded =	28.48 cfs @ 12.15 hrs, Volume=	0.479 af					
Primary =	23.32 cfs @ 12.15 hrs, Volume=	4.499 af					
Routed to Pond 5P : FOREBAY 1 & WET POND							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 6,200 sf Storage= 16,298 cf Peak Elev= 489.12' @ 12.15 hrs Surf.Area= 7,606 sf Storage= 24,032 cf (7,734 cf above start)

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	484.00	' 40,67	73 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)
Floveti		urf Area	Ina Stara	Cum Store	
Elevatio	-	Surf.Area	Inc.Store	Cum.Store	
(fee	1	(sq-ft)	(cubic-feet)	(cubic-feet)	
484.0	00	2,205	0	0	
485.0	00	3,040	2,623	2,623	
486.0	00	4,000	3,520	6,143	
487.0	00	5,055	4,528	10,670	
488.0	00	6,200	5,628	16,298	
489.0	00	7,445	6,823	23,120	
490.0	00	8,770	8,108	31,228	
491.0	00	10,120	9,445	40,673	
Device	Routing	Invert	Outlet Device	S	
#1	Discarded	488.00'	32.0" Horiz.	Orifice/Grate	C= 0.600
			Limited to we	ir flow at low hea	ads
#2	Primary	480.00'	18.0" Round	l Culvert	
	,		L= 156.0' R	CP. end-section	conforming to fill, Ke= 0.500
					479.00' S= 0.0064 '/' Cc= 0.900
					or, Flow Area= 1.77 sf
			11 0.010 1 V		

Discarded OutFlow Max=28.40 cfs @ 12.15 hrs HW=489.11' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 28.40 cfs @ 5.08 fps)

Primary OutFlow Max=23.31 cfs @ 12.15 hrs HW=489.12' TW=478.88' (Dynamic Tailwater) ←2=Culvert (Barrel Controls 23.31 cfs @ 13.19 fps)

Summary for Pond 9P: FOREBAY 3

Inflow Area	a =	3.812 ac, 93.68% Impervious, Inflow Depth = 6.14" for 100	yr (Qf) event					
Inflow	=	36.80 cfs @ 11.94 hrs, Volume= 1.951 af						
Outflow	=	20.97 cfs @ 12.02 hrs, Volume= 1.951 af, Atten= 43%,	Lag= 4.7 min					
Primary	=	20.97 cfs @ 12.02 hrs, Volume= 1.951 af						
Routed to Pond 5P : FOREBAY 1 & WET POND								

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 5,680 sf Storage= 14,085 cf Peak Elev= 489.92' @ 12.02 hrs Surf.Area= 7,997 sf Storage= 27,192 cf (13,107 cf above start)

Plug-Flow detention time= 141.3 min calculated for 1.626 af (83% of inflow) Center-of-Mass det. time= 11.6 min (756.3 - 744.8)

Volume	Inve	ert Avail.Sto	rage	rage Storage Description				
#1	484.0)0' 27,8	33 cf	Custom	Stage Data (Pr	rismatic)Listed below (Recalc)		
		o ()		<u>.</u>				
Elevatio		Surf.Area		Store	Cum.Store			
(fee	et)	(sq-ft)	(cubic	c-feet)	(cubic-feet)			
484.0	00	1,510		0	0			
485.0	00	2,445		1,978	1,978			
486.0	00	3,490		2,968	4,945			
487.0	00	4,555		4,023	8,968			
488.0	00	5,680		5,118	14,085			
489.0)0	6,860		6,270	20,355			
490.0	00	8,095		7,478	27,833			
Device	Routing	Invert	Outle	et Devices	6			
#1	Device 2	488.00'	24.0'	" Horiz. C	Drifice/Grate	C= 0.600		
			Limit	ed to weii	r flow at low hea	ads		
#2	Primary	482.00'	18.0'	" Round	Culvert			
	,		L= 16	69.0' RC	P. end-section	conforming to fill, Ke= 0.500		
						477.00' S= 0.0296 '/' Cc= 0.900		
						or, Flow Area= 1.77 sf		
					,			

Primary OutFlow Max=20.77 cfs @ 12.02 hrs HW=489.89' TW=478.12' (Dynamic Tailwater) **2=Culvert** (Passes 20.77 cfs of 22.73 cfs potential flow)

1=Orifice/Grate (Orifice Controls 20.77 cfs @ 6.61 fps)

DGC025_HydroCAD Prepared by Elan Design Lab, Inc HydroCAD® 10.20-2f s/n 07437 © 2022 HydroCAD	Type II 24-hr Water Quality (WQv) Rainfall=1.10"Printed 8/30/2022Software Solutions LLCPage 55
Runoff by SCS TR-20 r	hrs, dt=0.05 hrs, 961 points x 3 nethod, UH=SCS, Weighted-CN nod - Pond routing by Dyn-Stor-Ind method
	Runoff Area=8.472 ac 0.00% Impervious Runoff Depth=0.12" be=0.0430 '/' Tc=12.4 min CN=80 Runoff=0.78 cfs 0.082 af
	Runoff Area=4.414 ac 2.31% Impervious Runoff Depth=0.12" ope=0.1540 '/' Tc=1.3 min CN=80 Runoff=0.74 cfs 0.043 af
	unoff Area=11.168 ac 0.00% Impervious Runoff Depth=0.12" be=0.0540 '/' Tc=16.6 min CN=80 Runoff=0.86 cfs 0.108 af
	noff Area=9.583 ac 70.13% Impervious Runoff Depth=0.53" e=0.0360 '/' Tc=15.2 min CN=93 Runoff=6.46 cfs 0.423 af
	Runoff Area=1.876 ac 0.00% Impervious Runoff Depth=0.12" ope=0.0660 '/' Tc=8.6 min CN=80 Runoff=0.21 cfs 0.018 af
	unoff Area=3.707 ac 58.86% Impervious Runoff Depth=0.43" be=0.0350 '/' Tc=16.1 min CN=91 Runoff=1.95 cfs 0.133 af
	noff Area=3.812 ac 93.68% Impervious Runoff Depth=0.80" pe=0.0560 '/' Tc=4.0 min CN=97 Runoff=5.42 cfs 0.254 af
Reach 1R: OFFSITE	Inflow=1.73 cfs 0.208 af Outflow=1.73 cfs 0.208 af
Reach 2R: ONSITE WETLAND	Inflow=0.86 cfs 0.108 af Outflow=0.86 cfs 0.108 af
Reach 7R: OFFSITE	Inflow=6.89 cfs 1.288 af Outflow=6.89 cfs 1.288 af
Reach 8R: ONSITE WETLAND	Inflow=6.89 cfs 1.245 af Outflow=6.89 cfs 1.245 af
Pond 5P: FOREBAY 1 & WET POND Pea	k Elev=476.39' Storage=36,683 cf Inflow=21.75 cfs 1.247 af Outflow=6.89 cfs 1.245 af
	eak Elev=488.00' Storage=16,298 cf Inflow=6.46 cfs 0.423 af 0 af Primary=21.75 cfs 0.860 af Outflow=21.75 cfs 0.860 af
Pond 9P: FOREBAY 3 Pe	eak Elev=488.34' Storage=16,062 cf Inflow=5.42 cfs 0.254 af Outflow=4.01 cfs 0.254 af
	Runoff Volume = 1.061 af Average Runoff Depth = 0.30" Pervious = 30.456 ac 29.22% Impervious = 12.576 ac

Summary for Subcatchment S-1E: SUB 1 TO OFFSITE WETLAND

Runoff = 0.78 cfs @ 12.09 hrs, Volume= Routed to Reach 1R : OFFSITE 0.082 af, Depth= 0.12"

Area	(ac) C	N Des	cription		
8.	.472 8	30 >75°	% Grass co	over, Good,	, HSG D
8.	.472	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
12.4	764	0.0430	1.03		Lag/CN Method,

Summary for Subcatchment S-1P: SUB 1P TO OFFSITE

[49] Hint: Tc<2dt may require smaller dt

0.74 cfs @ 11.94 hrs, Volume= Runoff = Routed to Reach 7R : OFFSITE

0.043 af, Depth= 0.12"

Page 57

Area	(ac) (CN Des	cription		
4.	312	80 >75	% Grass co	over, Good	d, HSG D
0.	.102	98 Pav	ed parking	, HSG D	
4.	414	80 Wei	ghted Aver	age	
4.	.312	97.6	9% Pervio	us Area	
0.	102	2.31	1% Impervi	ous Area	
т.	1	0	Mala altri	0	Description
Tc	Length	Slope	,	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.3	104	0.1540	1.31		Lag/CN Method,

Summary for Subcatchment S-2E: SUB 2 TO ONSITE WETLAND

Runoff = 0.86 cfs @ 12.15 hrs, Volume= Routed to Reach 2R : ONSITE WETLAND 0.108 af, Depth= 0.12"

Area	(ac) (CN De	scription		
11	.168	80 >75	5% Grass c	over, Good	, HSG D
11	.168	100	.00% Pervi	ious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
16.6	1,273	0.0540	1.28		Lag/CN Method,

Summary for Subcatchment S-2P: SUB 2P TO FOREBAY 2

Runoff = 6.46 cfs @ 12.08 hrs, Volume= Routed to Pond 6P : FOREBAY 2 0.423 af, Depth= 0.53"

Area (a	ac) C	N Dese	cription			
2.8	62 8	30 >759	% Grass co	over, Good	HSG D	
5.2	52 9	8 Pave	ed parking,	HSG D		
0.8	36 9	8 Root	fs, HSG D			
0.6	33 9	8 Pave	ed parking,	HSG D		
9.58	83 9	3 Weig	ghted Aver	age		
2.8	62	29.8	7% Pervio	us Area		
6.72	21	70.1	3% Imperv	vious Area		
Tc L	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
15.2	1,620	0.0360	1.78		Lag/CN Method,	

Summary for Subcatchment S-3E: SUB 3 TO OFFSITE

Runoff = 0.21 cfs @ 12.04 hrs, Volume= 0.018 af, Depth= 0.12" Routed to Reach 1R : OFFSITE

Area (a	ac) Cl	N Desc	cription		
1.8	76 8	0 >75%	% Grass co	over, Good,	, HSG D
1.8	576	100.	00% Pervi	ous Area	
Tc ((min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
8.6	633	0.0660	1.23		Lag/CN Method,

Summary for Subcatchment S-3P: SUB 3P TO FOREBAY 1

Runoff = 1.95 cfs @ 12.09 hrs, Volume= 0.133 af, Depth= 0.43" Routed to Pond 5P : FOREBAY 1 & WET POND

Area	(ac)	CN	Desc	cription		
1	.525	80	>75%	6 Grass co	over, Good,	, HSG D
2	2.182	98	Pave	ed parking,	HSG D	
3	8.707	91	Weig	hted Aver	age	
1	.525		41.1	4% Pervio	us Area	
2	2.182		58.8	6% Imperv	vious Area	
Tc	5		Slope	Velocity	Capacity	Description
(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
16.1	1,53	1 0.	.0350	1.59		Lag/CN Method,

Summary for Subcatchment S-4P: SUB 4P TO FOREBAY 3

[49] Hint: Tc<2dt may require smaller dt

5.42 cfs @ 11.94 hrs, Volume= 0.254 af, Depth= 0.80" Runoff = Routed to Pond 9P : FOREBAY 3

Area	(ac) C	N Dese	cription		
0.	241 8	30 >759	% Grass co	over, Good	, HSG D
3.	571 9	98 Pave	ed parking,	, HSG D	
3.	812 9	97 Weig	ghted Aver	age	
0.	241	6.32	% Perviou	s Area	
3.	571	93.6	8% Imperv	ious Area	
т.	1	01		0	D an anim from
	0		,		Description
min)	(feet)	(ft/ft)	(ft/sec)	(cts)	
4.0	520	0.0560	2.17		Lag/CN Method,
	0. 3. 0. 3. Tc min)	0.241 8 3.571 9 3.812 9 0.241 3.571 Tc Length min) (feet)	0.241 80 >75 ⁶ 3.571 98 Pave 3.812 97 Weig 0.241 6.32 3.571 93.6 Tc Length Slope min) (feet) (ft/ft)	0.241 80 >75% Grass co 3.571 98 Paved parking 3.812 97 Weighted Aver 0.241 6.32% Perviou 3.571 93.68% Imperv Tc Length Slope Velocity min) (feet) (ft/ft) (ft/sec)	0.241 80 >75% Grass cover, Good 3.571 98 Paved parking, HSG D 3.812 97 Weighted Average 0.241 6.32% Pervious Area 3.571 93.68% Impervious Area Tc Length Slope Velocity Capacity min) (feet) (ft/ft) (ft/sec) (cfs)

Summary for Reach 1R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	21.516 ac,	0.00% Impervious, Inflow D	epth = 0.12"	for Water Quality (WQv) event
Inflow	=	1.73 cfs @	12.11 hrs, Volume=	0.208 af	
Outflow	=	1.73 cfs @	12.11 hrs, Volume=	0.208 af, Att	en= 0%, Lag= 0.0 min

Summary for Reach 2R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 11.168 ac, 0.00% Impervious, Inflow Depth = 0.12" for Water Quality (WQv) event Inflow = 0.86 cfs @ 12.15 hrs, Volume= 0.108 af Outflow = 0.86 cfs @ 12.15 hrs, Volume= 0.108 af, Atten= 0%, Lag= 0.0 min Routed to Reach 1R : OFFSITE

Summary for Reach 7R: OFFSITE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Are	a =	21.516 ac, 58	3.45% Impervious,	Inflow Depth >	0.72"	for Water Quality (WQv) event
Inflow	=	6.89 cfs @	0.26 hrs, Volume	= 1.288	af	
Outflow	=	6.89 cfs @	0.26 hrs, Volume	= 1.288	af, Atte	en= 0%, Lag= 0.0 min

Summary for Reach 8R: ONSITE WETLAND

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area = 17.102 ac, 72.94% Impervious, Inflow Depth > 0.87" for Water Quality (WQv) event Inflow = 6.89 cfs @ 0.26 hrs, Volume= 1.245 af Outflow = 6.89 cfs @ 0.26 hrs, Volume= 1.245 af, Atten= 0%, Lag= 0.0 min Routed to Reach 7R : OFFSITE

Summary for Pond 5P: FOREBAY 1 & WET POND

Inflow Are	a =	17.102 ac, 72	2.94% Impervious,	Inflow Depth =	0.87"	for Water Quality (WQv) event
Inflow	=	21.75 cfs @	0.00 hrs, Volume	e= 1.247	af	
Outflow	=	6.89 cfs @	0.26 hrs, Volume	e= 1.245	af, Atte	en= 68%, Lag= 15.6 min
Primary	=	6.89 cfs @	0.26 hrs, Volume	e= 1.245	af	-
Routed	d to Rea	ach 8R : ONSIT	E WETLAND			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 475.00' Surf.Area= 6,000 sf Storage= 22,390 cf Peak Elev= 476.39' @ 0.26 hrs Surf.Area= 15,988 sf Storage= 36,683 cf (14,293 cf above start)

Plug-Flow detention time= 667.6 min calculated for 0.686 af (55% of inflow) Center-of-Mass det. time= 56.2 min (600.8 - 544.6)

Volume	Inve	ert Avail.Sto	rage Storage	Description	
#1	468.0	0' 171,72	28 cf Custom	Stage Data (Pri	smatic)Listed below (Recalc)
Elevatio	าท	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
468.0		1,610	0	0	
469.0	00	2,000	1,805	1,805	
470.0	00	2,410	2,205	4,010	
471.0	00	2,840	2,625	6,635	
472.0		3,290	3,065	9,700	
473.0		3,770	3,530	13,230	
474.0		4,275	4,023	17,253	
475.0		6,000	5,138	22,390	
476.0		11,675	8,838	31,228	
477.0		22,610	17,143	48,370	
478.0		26,720	24,665	73,035	
479.0		30,590	28,655	101,690	
480.0		35,215	32,903	134,593	
481.0	00	39,055	37,135	171,728	
Device	Routing	Invert	Outlet Devices	3	
#1	Device 4	480.00'	48.0" Horiz. C	Drifice/Grate C:	= 0.600
			Limited to weil	flow at low head	ds
#2	Device 4	478.00'	3.0' long x 0.7	75' rise Sharp-C	rested Rectangular Weir
			2 End Contrac	tion(s)	-
#3	Device 4	475.00'	18.0" Round	Culvert	
					nforming to fill, Ke= 0.500
			Inlet / Outlet Ir	nvert= 471.00' / 4	75.00' S= -0.1053 '/' Cc= 0.900
			n= 0.010 PVC	C, smooth interior	, Flow Area= 1.77 sf
#4	Primary	475.00'	24.0" Round		
			L= 38.0' RCF	P, end-section co	nforming to fill, Ke= 0.500
					74.00' S= 0.0263 '/' Cc= 0.900
			n= 0.010 PVC	C, smooth interior	, Flow Area= 3.14 sf

Primary OutFlow Max=6.84 cfs @ 0.26 hrs HW=476.39' TW=0.00' (Dynamic Tailwater)

-4=Culvert (Passes 6.84 cfs of 9.31 cfs potential flow)

1=Orifice/Grate (Controls 0.00 cfs) 2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

-3=Culvert (Inlet Controls 6.84 cfs @ 4.01 fps)

Summary for Pond 6P: FOREBAY 2

[44] Hint: Outlet device #2 is below defined storage

Inflow Area = 9.583 ac, 70.13% Impervious, Inflow Depth = 0.53" for Water Quality (WQv) event 6.46 cfs @ 12.08 hrs, Volume= Inflow = 0.423 af 0.860 af, Atten= 0%, Lag= 0.0 min Outflow = 21.75 cfs @ 0.00 hrs, Volume= Discarded = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af Primary = 21.75 cfs @ 0.00 hrs. Volume= 0.860 af Routed to Pond 5P : FOREBAY 1 & WET POND

Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 6,200 sf Storage= 16,298 cf Peak Elev= 488.00' @ 0.00 hrs Surf.Area= 6,200 sf Storage= 16,298 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Volume	Invert	Avail.Sto	rage S	storage D	escription	
#1	484.00	40,67	73 cf C	ustom S	tage Data (Pi	'ismatic) Listed below (Recalc)
Flovetic		urf Aree	Inc C	toro	Cum Store	
Elevatio		urf.Area	Inc.S		Cum.Store	
(fee	et)	(sq-ft)	(cubic-f	eet)	(cubic-feet)	
484.0	0	2,205		0	0	
485.0	00	3,040	2,	623	2,623	
486.0	00	4,000	3,	520	6,143	
487.0	00	5,055	4,	528	10,670	
488.0	00	6,200	5,	628	16,298	
489.0	00	7,445	6,	823	23,120	
490.0	00	8,770	8,	108	31,228	
491.0	00	10,120	9,	445	40,673	
Device	Routing	Invert	Outlet	Devices		
#1	Discarded	488.00'	32.0" ł	Horiz. Ori	ifice/Grate	C= 0.600
			Limited	to weir f	low at low hea	ads
#2	Primary	480.00'	18.0"	Round C	ulvert	
	,		L= 156	.0' RCP	. end-section	conforming to fill, Ke= 0.500
					,	479.00' S= 0.0064 '/' Cc= 0.900
				-		or, Flow Area= 1.77 sf
			n= 0.0	10 1 00,		, 10W/10a- 1.// 0

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=488.00' (Free Discharge) **1=Orifice/Grate** (Controls 0.00 cfs)

Primary OutFlow Max=21.75 cfs @ 0.00 hrs HW=488.00' TW=475.28' (Dynamic Tailwater) -2=Culvert (Barrel Controls 21.75 cfs @ 12.31 fps)

Summary for Pond 9P: FOREBAY 3

Inflow Area	a =	3.812 ac, 9	3.68% Impe	rvious, Ir	nflow Depth =	0.80"	for Water Quality (WQv) event
Inflow	=	5.42 cfs @	11.94 hrs, \	Volume=	0.254	af	
Outflow	=	4.01 cfs @	12.00 hrs, \	Volume=	0.254	af, Atte	en= 26%, Lag= 3.4 min
Primary	=	4.01 cfs @	12.00 hrs, \	Volume=	0.254	af	
Routed	to Pond	5P : FOREB	AY 1 & WET	POND			

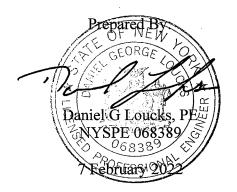
Routing by Dyn-Stor-Ind method, Time Span= 0.00-48.00 hrs, dt= 0.05 hrs / 3 Starting Elev= 488.00' Surf.Area= 5,680 sf Storage= 14,085 cf Peak Elev= 488.34' @ 12.00 hrs Surf.Area= 6,077 sf Storage= 16,062 cf (1,977 cf above start)

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= 18.9 min (812.9 - 794.0)

Volume	Inve	ert Avail.Sto	rage	Storage	Description	
#1	484.0	0' 27,8	33 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevetic		Curf Area	la e l	Ctore	Curra Starra	
Elevatio		Surf.Area		Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic	-feet)	(cubic-feet)	
484.0	00	1,510		0	0	
485.0)0	2,445		1,978	1,978	
486.0	00	3,490		2,968	4,945	
487.0	00	4,555	4	4,023	8,968	
488.0	00	5,680	Į	5,118	14,085	
489.0	00	6,860	(6,270	20,355	
490.0	00	8,095	-	7,478	27,833	
Device	Routing	Invert	Outle	t Devices	6	
#1	Device 2	488.00'	24.0"	' Horiz. C	Drifice/Grate	C= 0.600
			Limite	ed to weii	r flow at low hea	ads
#2	Primary	482.00'	18.0"	' Round	Culvert	
	,		I = 16	69.0' RC	P end-section	conforming to fill, Ke= 0.500
						477.00' S= 0.0296 '/' Cc= 0.900
				-		or, Flow Area= 1.77 sf
			n= 0.			$J, I \cup W \land \Box = I.II SI$

Primary OutFlow Max=4.00 cfs @ 12.00 hrs HW=488.34' TW=475.74' (Dynamic Tailwater) **2=Culvert** (Passes 4.00 cfs of 20.11 cfs potential flow)

1=Orifice/Grate (Weir Controls 4.00 cfs @ 1.90 fps)


DANIEL G. LOUCKS, P.E. GEOTECHNICAL ENGINEERING

Geotechnical Report For MCIDA Warehouse Site Rt 5S, Town of Florida, New York

File No. 3960

Prepared For:

Prime AE Group of NY

14 AMBER WAY, BALLSTON SPA, NY 12020 = 518-369-9453 = E-MAIL: DGLGEOENG@GMAIL.COM

INTRODUCTION:

The subsurface investigation for the proposed MCIDA Warehouse Facility, Town of Florida, New York has been completed. Aztech Environmental Technologies Inc. of Ballston Spa, New York has completed ten (10) soil borings at the site. Soil boring B-1 was not performed. The logs of these borings, along with a location diagram, have been included in the appendix of this report.

It is my understanding that the final design for the site hasn't been completed, but the estimated construction may include one to two single-story warehouse building(s) located approximately as indicated on the boring location diagram. The building(s) will have a steel frame design.

The maximum column loadings could range from 150 to 200 kips. The settlement tolerances are normal. Settlement tolerances are considered to include up to 1 inch of total settlement and 3/4 inch of differential settlement between column locations.

The current preliminary plan has an estimated first floor slab will be established at between elevations 490 and 495. This would require up to approximately 25 feet of cut and fill over the site.

The purpose of this report is to describe the investigation conducted and the results obtained; to analyze and interpret the data obtained; and to make preliminary recommendations for the design and construction of the feasible foundation types and earthworks for the project. The preliminary recommendations contained in this report are based on the information that was provided up to the date the report was completed. Any changes in the design of the project or changes to the recommendations provided in this report should be brought to my attention to determine if there needs to be any revision of the geotechnical recommendations. I am not responsible for any changes made to the recommendations provided in this report unless I have provided written approval of the changes.

The scope of my services has been limited to coordinating the boring and laboratory investigation, analyzing the soils geotechnical report with providing а information, and foundation recommendations and seismic site preliminary classifications as per NYS Building Code. Environmental aspects of the project as well as grading and site design should be performed by qualified others. Additional soil borings may be required depending on the final building placement and grading.

FIELD INVESTIGATION PROCEDURES:

The borings were extended by means of 3.75 inch ID, hollow-stem augers, by using various cutting bits using circulating drilling fluid to remove the cuttings from the casing and by continuous sampling with a split-spoon sampler.

Representative samples were obtained from the boring holes by means of the split-spoon sampling procedure performed in accordance with ASTM D 1586. The standard penetration values obtained from this procedure have been indicated on the soil boring logs.

Soil samples obtained from these procedures were examined in the field, sealed in containers, and shipped to the laboratory for further examination, classification, and testing, as applicable.

During the investigation, water level readings were obtained at various times where water accumulated in the boring hole. The water level readings, along with an indication of the time of the reading relative to the boring procedure, have been indicated on the soil boring logs.

LABORATORY INVESTIGATION:

All samples were examined in the laboratory by the soil engineer and classified according to the Unified Soil Classification System. In this system, the soils are visually classified according to texture and plasticity. The appropriate group symbol is indicated on the soil boring logs.

Atterberg limit tests were performed on representative samples in accordance with ASTM D 4318. The results of these tests are included in the appendix of this report.

Sieve Analyses were performed on representative samples in accordance with ASTM Specification D 422. These tests were performed to verify the visual soil classifications. Results of the tests can be found in the appendix of the report.

SITE CONDITIONS:

The site is currently a farm field. The ground surface at the site slopes down from approximately elevation 520 down to 470.

Geologic mapping of the area indicates upper silt/clay soils with bedrock consisting of sales and some siltstone.

SUBSURFACE CONDITIONS:

The specific subsurface conditions encountered at each boring location are indicated on the individual soil boring logs. However, to aid in the evaluation of this data, I have prepared a generalized description of the soil conditions based on the boring data. Ground surface elevations as shown on the boring logs, when available, have be estimated from the existing topographic mapping as shown on the site plan provided to this office.

The borings generally encountered an upper layer of clayey silt topsoil that extends to between approximately 1 and 2 feet below the existing ground surface.

Beneath the topsoil is clayey silt soils with varying amounts of sand and gravel. These soils extended to the bottom of the borings at between 10 and 42 feet below the existing ground surface and they are loose to very dense. Borings B-10 and B-11 encountered split spoon/auger refusal at 20.2 and 12.6 feet below the existing ground surface respectively. No rock core was able to be taken due to site limitations. I recommend that when available, the borings be extended and rock core be taken at these locations to determine if refusal was on bedrock of very dense glacial till soils with possible cobbles/boulders.

GROUNDWATER CONDITIONS:

Accurate groundwater levels are difficult to determine in clayey silt soils with only short term readings or observations. Clayey silt soils typically do not allow an adequate amount of water to flow through the soil to produce a water level reading during the drilling operation. I have indicated where water was observed on the boring logs.

Based on the groundwater levels observed during the boring investigation, the moisture condition of the samples recovered from the boring holes and coloration of the soil samples, I judge that the groundwater level was located below depth of 6 feet. Perched groundwater tables may occur at higher elevations in the soil profile due to groundwater being retained by layers or lenses of silt or clay soils.

Some fluctuation in hydrostatic groundwater levels and perched water conditions should be anticipated with variations in the seasonal rainfall and surface runoff.

It should be noted that the groundwater levels were obtained during the drilling procedure. Actual water levels may vary at the time of construction. Some groundwater could be encountered in soil layers labeled moist to wet on the boring logs.

ANALYSIS AND RECOMMENDATIONS:

The purpose of this investigation and report was to perform soil borings spaced across the potential building areas at the site to provide a better understanding of the subsurface conditions and look at possible foundation types for proposed building(s). It also was performed to identify possible geotechnical issues that may occur at the site.

I understand that the current preliminary plan includes on long warehouse building with a possible finished floor elevation of between 490 and 495. Depending on the size of the building this could require up to approximately 25 feet of cut and fill at the site. Borings B-8, B-9, B-10 and B-11 were all performed where the ground surface is currently higher than elevation 500. The other borings were performed at elevations of 489 or lower. Boring B-8 extended to approximately elevation 483, boring B-9extended to approximately elevation 465, boring B-10 extended to approximately elevation 487 all of which are below the estimated proposed finished floor elevation of 490. Boring B-11 extended to approximately elevation 502 where power auger refusal was encountered. Depending on the final grading plan, I recommend at this boring be extended and possibly additional borings performed to more accurately determine the subsurface conditions in this area and if bedrock may be encountered.

Depending on the proposed grading, the lower portion of the site may require up to 25 feet of fill. The borings in this area indicate the soils are loose to dense clayey silt soils with varying amounts of sand and gravel. In my experience these soils generally consolidate fairly quickly (within 30 to 45 days of loading). I would recommend monitoring this area with settlement plates during the placement of the fill to determine the rate of consolidation of the virgin soils. This will help determine when the rate has slowed to within allowable tolerances to allow the construction of the proposed building.

The other potential issue would be using on site soils as controlled fill in the proposed fill locations. These soils are predominantly clayey silt soils and will therefore be very sensitive to moisture content when placing them. If these soils become wet, they can be very difficult to place and achieve proper compaction. They also can become easily disturbed by construction traffic. Proper placement of these soils as controlled fill in the fall, winter and spring will be difficult. A summer placement of these soils as controlled fill would offer the best opportunity for success.

Site Work:

The proposed construction areas should be cleared and grubbed and all organic topsoil and vegetation along with any uncontrolled fill and debris. The subgrade should be proof-rolled with a 10-ton roller and the proof rolling should be observed by the soil engineer. This proof rolling will compact the subgrade and reveal the presence of soft spots. If saturated subgrade conditions exist, I recommend that the subgrade be observed and probed by the soil engineer in place of proof rolling. Any soft spots should be excavated and backfilled with controlled fill material.

A way to stabilize a spongy, but suitable, footing subgrade would be to spread a reinforcement or separation type of geotextile (Mirafi 600X or approved equal) on the subgrade and follow with a lift of clean, granular fill or uniform crushed stone. The thickness of the controlled fill can range from 0.5 to 1.5 feet, as necessary, to achieve a working mat upon which to place footings. If uniform crushed stone is used as controlled fill a layer of geotextile should be placed between the crushed stone and any sand/gravel controlled fill or virgin soil.

5

Building Foundations:

Based on the estimated loading, it is my preliminary opinion that the proposed structure(s) may be supported by spread footing foundations resting on firm virgin, inorganic, soils or on controlled fill which, in turn, rests on these virgin materials. Footings can be preliminarily designed for a maximum, net, allowable soil bearing pressure of 2000 psf. When a final plan has been developed and additional soil borings performed, a final recommendation can be provided.

A minimum footing width of 2.0 feet is recommended for load bearing strip footings. Isolated footings should be at least 3.0 feet wide.

Exterior footings or footings in unheated areas should have a minimum of 4.0 feet of embedment for protection from frost action. Interior footings should have a minimum embedment of 2.0 feet below finished grade to develop the bearing value of the soils.

All walls that retain soil on only one side should have a drain tile placed along the base of the wall. The drain tile should be a minimum of 4 inches in diameter, surrounded by a minimum of 6 inches of properly graded washed sand or crushed stone wrapped with a non-woven filter fabric with a maximum apparent opening size of 70 and a minimum trapezoid tearing strength of 100 lbs. The drain tile should drain to a stormwater sewer, daylight, or a sump equipped with a pump.

The wall should then be backfilled with a controlled, well graded, free-draining granular material. The material should extend away from the wall a horizontal distance of two-thirds the height of the fill being placed. The upper 1 foot of material should be a fairly impermeable material to shed surface water and should be pitched away from the building to provide proper drainage.

If these procedures are used, a static lateral soil pressure of 40 psf per foot of retained soil can be used for preliminary design of the wall. This static, active lateral soil pressure is based on a moist unit weight of 125 pcf and an angle of internal friction of 32 degrees. A wall soil friction angle of 18 degrees and a coefficient of base sliding of 0.35 can also be used for preliminary design. If the retaining wall is braced or if the deflection is limited prior to backfilling so the active soil pressure is not achieved, a static, at-rest lateral soil pressure of 63 psf per foot of retained soil can be used for preliminary design.

To resist overturning and sliding a static lateral passive pressure of 250 psf per foot of embedment can be used for preliminary design, provided foundations are backfilled with controlled fill. This static, passive pressure resistance value has been reduced from the calculated full passive pressure because of stress/strain characteristics of the soil. To develop the full, calculated resistance a certain amount of movement or deflection in the structure is required. The amount of movement required to generate this resistance generally greater than is acceptable for structures. I therefore recommend that the full passive pressure not be used.

The passive resistance of the upper two feet of soil, not in floor slab areas, should be ignored due to surface effects of frost and moisture.

Any surcharge loading of existing adjacent building foundations or other adjacent structures/utilities should be addressed by the structural engineer using Boussinesq charts.

Floor Slabs:

Concrete floor slabs can be preliminarily designed to rest on controlled fills resting on virgin materials. A layer of wellgraded, free-draining, granular material should be placed beneath the floor slab to provide drainage, act as a capillary break, and to provide better and more uniform support. The thickness of this layer will depend on the loading and differential settlement tolerances. I would preliminarily estimate that a minimum of 6 inches would be required in office floor areas and up to 18 inches in warehouse slab locations.

Seismic Conditions:

The potential seismic conditions at the proposed site have been investigated using the information provided in the NYS Building Code, ASCE-7 and the boring information obtained during my investigation and past experience with soils in the area.

7

Based on the soil boring information, estimated proposed finished floor elevations and my experience it is my opinion that the Site Soil Classification (ASCE-7 Table 20.3-1) could be assumed to be D. Using data from Reference Document ASCE7-16, Risk Category I, I estimate that the MCE spectral acceleration (SMS) at short periods is 34.7 and the MCE spectral acceleration (SM1) at 1 s period is 15.0. I have included a copy of the spectral accelerations for other Hazard Levels in the appendix of this report.

The probabilistic ground motion values are expressed in %g for rock site class B. Peak ground accelerations in the upper soil profile may vary. If specific peak ground accelerations or shear wave velocities are required for the upper soil profile additional testing would be required. If it is determined by the structural engineer that the Seismic Design Category is D, E or F additional geotechnical recommendations can be provided.

The soil borings and my analysis do not indicate any significant potential seismic hazards such as liquefaction, sensitive clays, weakly cemented soil, or surface rupture.

CONSTRUCTION PROCEDURES AND PROBLEMS:

The NYS Building Code Section 17 requires special inspections and follow up reports. These inspections should be performed to verify compliance with the recommendations contained in this report.

All excavations of more than a few feet should be sheeted and braced or laid back to prevent sloughing in of the sides.

Excavations should not extend below adjacent footings or structures unless properly designed sheeting and bracing or underpinning is installed.

Sump-pit and sump-pump-type dewatering may be required in excavations or low areas during wet weather or if groundwater is encountered. If large quantities of groundwater are encountered vacuum wells maybe required to stabilize the subgrade soils. All excavations should be dewatered to a minimum of 1 foot below the bottom of the excavation. All dewatering programs should be designed to prevent bottom heave. Any dewatering program should be performed with properly designed filtration protection on all pumps to prevent loss of ground.

As previously noted, the on-site soils contain clayey silt which will make the soils sensitive to moisture content. If the material becomes wet or saturated, it will become spongy and easily disturbed. It will also be difficult to place as controlled fill if it becomes too wet. Imported well draining sand and gravel or possibly crushed stone may be required to prevent disturbance of the subgrade soils during construction and in roadway areas. Additional subbase, up to 24 inches of total thickness, may be required to support traffic loadings. Any areas of the pavement subgrades that become disturbed during construction should be removed and replaced with subbase materials.

Temporary paving using coarse fill material or separation/ reinforcement geotextile and coarse fill material will be required for moving about the site during wet or thaw weather. MCIDA Warehouse Site Rt 5S, Town of Florida, New York File No. 3960

CONTENTS OF APPENDIX:

1. General Notes

2. Boring Location Diagram

3. Boring Logs

4. Seismic Design Values

5. Laboratory Test Results

6. Unified Soil Classification System

7. Soil Use Chart

8. General Qualifications

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS

- SS : Split-Spoon 1^{3/4} "I.D., 2" O.D., except where noted
- S : Shelby Tube 2" O.D., except where noted
- PA : Power Auger Sample

DB : Diamond Bit — NX: BX: AX:

- CB : Carboloy Bit NX: BX: AX:
- OS : Osterberg Sampler 3" Shelby Tube
- HS : Housel Sampler
- WS : Wash Sample
- FT : Fish Tail
- RB : Rock Bit
- WO : Wash Out

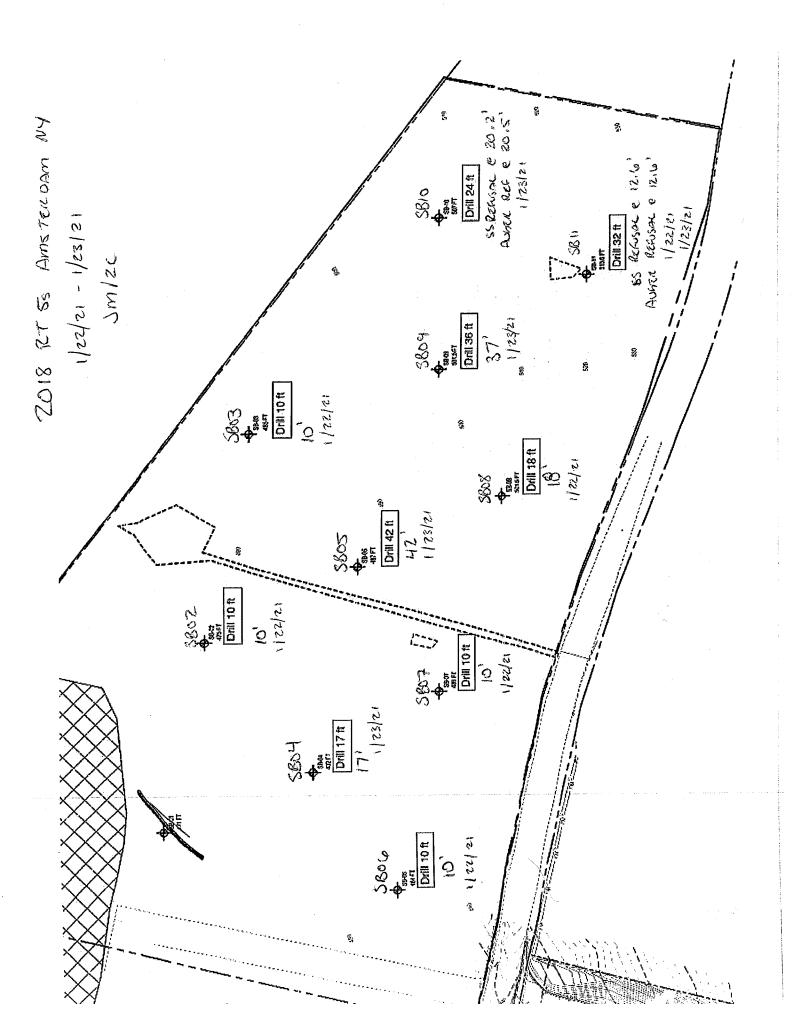
Standard "N" Penetration: Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch OD split spoon, except where noted

WATER LEVEL MEASUREMENT SYMBOLS

- WL : Water Level
- WCI: Wet Cave In
- DCI : Dry Cave In
- WS : While Sampling
- WD : While Drilling
- BCR: Before Casing Removal
- ACR : After Casing Removal
- AB : After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable ground water levels. In impervious soils the accurate determination of ground water elevations is not possible in even several day's observation, and additional evidence on ground water elevations must be sought.

CLASSIFICATION


COHESIONLESS SOILS

"Trace"	:	1% to 10%		
"Trace to some"	:	10% to 20%		
"Some"	:	20% to 35%		
"And"	:	35% to 50%		
Loose	:	0 to 9 Blows	1	•
Medium Dense	:	10 to 29 Blows	l	or
Dense	:	30 to 59 Blows	ſ	equivalent
Very Dense	:	≥60 Blows	J	* 1

COHESIVE SOILS

If clay content is sufficient so that clay dominates soil properties, then clay becomes the principle noun with the other major soil constituent as modifiers: i.e., silty clay. Other minor soil constituents may be added according to classification breakdown for cohesionless soils; i.e., silty clay, trace to some sand, trace gravel.

Soft Medium Stiff Very Stiff Hard : $0.00 - 0.59 \text{ tons/ft}^2$: $0.60 - 0.99 \text{ tons/ft}^2$: $1.00 - 1.99 \text{ tons/ft}^2$: $2.00 - 3.99 \text{ tons/ft}^2$: $\geq 4.00 \text{ tons/ft}^2$

BORING NO: 2

			••• • •			SHEET 1 of 1		
PRO	JECT NA	ME: MCI	DA Project			FILE NUMBER: 3960		
LOCA	ATION: TO	own of Fle	orida, New York			OFFSET: None		
DATE		ED/COMF	PLETED: Januar	y 2022		SURFACE ELEV.: 475 +/- ft		
	NEER/AF		·			DRILL CONTRACTOR: Aztech Environmental Technology		
DRIL		THOD: H	ollow Stem Auge	er	г			
	L RIG TY		-			Daniel G Loucks PE		
				,		PO Box 163		
	P: 30 Incl					Ballston Spa, New York 12020 Phone: 518-371-7622		
				-		Fax: 518-383-2069		
			D/ID: 3.75 inch I I: None Observed		ws			
DEPTH	Sample Number	Sample Type	BLOW COUNTS per 6 inches	"N" Value	Recovery	DESCRIPTION		
	-		······			Topsoil		
1-	1	SS	8-12-10-11	22	-	Clayey Silt, trace Sand, Brown, Moist, Medium Dense (ML)		
2	2	SS	7-5-7-6	12		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Medium Dense to Dense (ML)		
4	3	SS	11-16-14-19	30				
6- 7- 8-	4	SS	16-22-26-18	48				
9- 10-	5	SS	16-16-20-27	36		Clayey Silt, some Sand, trace to some Gravel, Dark Brown, Moist, Dense (ML)		
10	- -					End of Boring at 10.0 Feet		
13-	-							
14 15-								
16-	-							
17-	-							
18-	-							
19-	-							
20-	-							
21- 22-								
22-			, ,					
24-								
25-	4							
26-	-		, i					
27-	4							
L	1		L	1	I			

BORING NO: 3

.

PRO	JECT NA	ME: MCII	DA Project			FILE NUMBER: 3960
LOC	ATION: To	own of Fl	orida, New York			OFFSET: None
DATE	E STARTE	ED/COM	PLETED: Januar	y 2022		SURFACE ELEV.: 485 +/- ft
ENGI	NEER/AF	RCHITEC	т:			DRILL CONTRACTOR: Aztech Environmental Technology
DRIL	LING ME	THOD: H	ollow Stem Auge	er	ſ	Devial O Levels DE
DRIL	L RIG TY	PE: ATV				Daniel G Loucks PE PO Box 163
HAM	MER WEI	GHT: 14	0 Lbs			Ballston Spa, New York 12020
DROI	P: 30 Incl	nes				Phone: 518-371-7622
CASI	NG DIAM	ETER: O	D/ID: 3.75 inch I	D		Fax: 518-383-2069
WAT	ER LEVE	L DEPTH	I: None Observed	TIME:	WS	
DEPTH	Sample Number	Sample Type	BLOW COUNTS per 6 inches	''N'' Value	Recovery	DESCRIPTION
- 1-	1	SS	4-7-6-12	13		Topsoil
2-			4-7-0-12	13		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Medium Dense (ML)
3-	2	SS	7-7-7-7	14		
4-						
5-	3	SS	10-12-17-19	29		
6-						
7-	4	SS	6-8-19-15	27		
8-			40.40.04.00			Clayey Silt, some Sand, trace to some Gravel, Dark Brown, Moist,
9- - 10-	5	SS	18-18-21-20	39		Dense (ML)
- 11-	-					End of Boring at 10.0 Feet
- 12	-					
13-	-					
14-	-					
15-						
16- -	-					
17-						
18- - 19-						
20-						
20	-					
- 22	-					
23-	-					
24-						
25-	-			ļ		
26-	4					
27-	-					

PRO		NE: MCIE	DA Project			FILE NUMBER: 3960		
LOC	ATION: To	own of Flo	orida, New York			OFFSET: None		
DATE	E STARTE	ED/COMF	PLETED: January	/ 2022		SURFACE ELEV.: 482 +/- ft		
ENGI	NEER/AF	CHITEC	т:			DRILL CONTRACTOR: Aztech Environmental Technology		
DRIL	LING ME	THOD: H	ollow Stem Auge	r	Г	Denial C Laureka DE		
DRIL	L RIG TY	PE: ATV				Daniel G Loucks PE PO Box 163		
HAM	MER WEI	GHT: 140	0 Lbs			Ballston Spa, New York 12020		
DROI	P: 30 Incl	nes				Phone: 518-371-7622		
CASI	NG DIAM	ETER: O	D/ID: 3.75 inch II	D		Fax: 518-383-2069		
WAT	ER LEVE	L DEPTH	I: None Observed	TIME: '	ws			
DEPTH	Sample Number	Sample Type	BLOW COUNTS per 6 inches	"N" Value	Recovery	DESCRIPTION		
1-	1	SS	14-14-8-2	22		Clayey Silt, trace to some Sand, trace Gravel, Dark Brown, Moist, Medium Dense (ML) Topsoil		
2-	2	SS	4-4-4-4	8		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Loose to Medium Dense (ML)		
4- 5-	3	SS	7-7-12-13	19				
6- - 7- - 8-	4	SS	11-11-11-13	22		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Medium Dense to Dense (ML)		
9-	5	SS	12-12-21-16	33				
10	6	SS	8-11-7-14	• 18		Clayey Silt, some Sand, trace to some Gravel, Dark Gray, Moist, Medium Dense (ML)		
13- 14-		PA				Clayey Silt, some Gravel, trace to some Sand, Dark Gray, Moist, Medium Dense (ML)		
15- 16- 17-	7	SS	12-12-13-12	25				
18- 19- 20- 21- 22- 23- 24- 25- 26- 27-						End of Boring at 17.0 Feet		

PRO	JECT NA	ME: MCII	DA Project			FILE NUMBER: 3960			
LOC	ATION: T	own of Fle	orida, New York			OFFSET: None			
DATE	E STARTI	ED/COMF	PLETED: Januar	y 2022		SURFACE ELEV.: 487 +/- ft			
ENG	NGINEER/ARCHITECT:					DRILL CONTRACTOR: Aztech Environmental Technology			
DRIL	LING ME	THOD: H	ollow Stem Auge	r	Г				
DRIL	L RIG TY	PE: ATV				Daniel G Loucks PE			
HAM	MER WEI	GHT: 140) Lbs			PO Box 163 Ballston Spa, New York 12020			
DRO	P: 30 Incl	nes				Phone: 518-371-7622			
CASI	NG DIAM	ETER: O	D/ID: 3.75 inch II	D		Fax: 518-383-2069			
WATI	ER LEVE	L DEPTH	: None Observed	TIME:	ws				
DEPTH	Sample Number		BLOW COUNTS per 6 inches	''N'' Value	Recovery	DESCRIPTION			
1-	1	SS	16-13-4-4	17		Clayey Silt, trace Sand, Dark Brown, Moist to Wet, Medium Dense (ML) Topsoil			
	2	SS	3-3-2-6	5		Clayey Silt, trace Sand, Brown, Moist to Wet, Loose (ML)			
4	3	SS	8-3-3-5	6		Clayey Silt, trace to some Sand, Gravel, Brown, Moist, Loose (ML)			
	4	SS	8-16-10-10	26		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Medium Dense to Dense (ML)			
9- 10-	5	SS	10-10-20-31	30					
11- 12-	6	SS	6-6-11-9	17		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Medium Dense (ML)			
13- 14-		PA				Clayey Silt, some Sand, trace to some Gravel, Dark Brown, Moist, Dense (ML)			
15- 16- 17-	7	SS	14-26-27-20	53					
18- - 19- -		PA							
20- 21- 22	8	SS	11-5-7-8	12					
22- 23- 24-		PA				Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML)			
25- 26- 27-	9	SS	5-8-7-9	15					
- '									

Γ

BORING NO: 5

SHEET 2 of 2

PRO	JECT NA	ME: MCII	DA Project			FILE NUMBER: 3960		
LOC	ATION: T	own of Fl	orida, New York			OFFSET: None		
DATE	E STARTI	ED/COM	PLETED: Januar	y 2022		SURFACE ELEV.: 487 +/- ft		
ENG	NEER/AF	RCHITEC	т:			DRILL CONTRACTOR: Aztech Environmental Technology		
DRIL	LING ME	THOD: H	ollow Stem Auge	r	ſ	Deviat O Levels DE		
DRIL	L RIG TY	PE: ATV				Daniel G Loucks PE PO Box 163		
HAM	MER WEI	GHT: 14	0 Lbs			Ballston Spa, New York 12020		
DRO	P: 30 Incl	nes				Phone: 518-371-7622		
			D/ID: 3.75 inch II			Fax: 518-383-2069		
WAT			I: None Observed		ws			
DEPTH	Sample Number		BLOW COUNTS per 6 inches	"N" Value	Recovery	DESCRIPTION		
28- 29-		PA				Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML)		
30 31- 32-	10	SS	5-5-8-9	13				
33- 34-		PA						
35- 	11	SS	5-7-8-8	15				
38- 39-		PA			-	Clayey Silt, some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML)		
40 41 42	12	SS	5-8-8-11	16				
43- 44- 45-						Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML)		
43- 46- 47-								
48- 49-								
50- - 51-								
52- 53- 54-				-				

Γ

٦

FILE NUMBER: 3960			Project	: MCIDA Pr	IAME: MC	JECT NA	PROJ
OFFSET: None			a, New York	n of Florida,	Town of I	ATION: ⊤	LOCA
SURFACE ELEV.: 484 +/- ft		2022	TED: January	COMPLET		START	DATE
DRILL CONTRACTOR: Azte				HITECT:	ARCHITE	NEER/AI	ENGI
	г	r	w Stem Auger	OD: Hollow	IETHOD:	LING ME	
Daniel (: ATV	TYPE: AT	L RIG TY	DRILL
PO Ballston Spa			os	IT: 140 Lbs	/EIGHT: 1	MER WE	HAMN
Phone:				i	nches	-: 30 Inc l	DROP
Fax: 5)	D: 3.75 inch ID	ER: OD/ID:	METER:		CASIN
3	ws	ΓIME: V	one Observed	EPTH: Nor	/EL DEPT	ER LEVE	WATE
ecovery DES	Recovery	"N" Value	BLOW OUNTS per 6 inches	COI	le Sampl er Type	Sample Number	
Topsoil							-
Clayey Silt and Sand, trace to Loose to Medium Dense (ML-		19	6-6-13-17	55 6-	SS	1	
		4	3-2-2-2	ss	SS	2	3-
							4-
Clayey Silt, some Sand, trace		7	2-2-5-4	ss z	SS	3	5-
		10	6-5-5-5	ss e	ss	4	7-
Clayey Silt, trace to some Sar Medium Dense (ML)		24	7-11-13-15	SS 7-'	SS	5	9-
End of Boring at 10.0 Feet							10- 11-
							12-
							14-
							15-
							16-
							17-
							18-
							19-
						- -	1 -
							-
							-
							26-
							27-
							20 21 22 23 23 24 25 26

BORING NO: 7

PRO	IECT NA	NE: MCIE	DA Project			FILE NUMBER: 3960			
LOCATION: Town of Florida, New York						OFFSET: None			
DATE STARTED/COMPLETED: January 2022						SURFACE ELEV.: 489 +/- ft			
ENGINEER/ARCHITECT:						DRILL CONTRACTOR: Aztech Environmental Technology			
DRILLING METHOD: Hollow Stem Auger						Daniel C Laueka PE			
DRILLING METHOD: Hollow Stem Auger DRILL RIG TYPE: ATV HAMMER WEIGHT: 140 Lbs						Daniel G Loucks PE PO Box 163			
HAMMER WEIGHT: 140 Lbs						Ballston Spa, New York 12020			
DROP: 30 Inches						Phone: 518-371-7622			
CASING DIAMETER: OD/ID: 3.75 inch ID WATER LEVEL DEPTH: None ObserverTIME: WS						Fax: 518-383-2069			
WATER LEVEL DEPTH: None Observed TIME: WS									
DEPTH Sample Sample COUNTS per Value Recovery 6 inches						DESCRIPTION			
-	1		40.0.4.4	10		Topsoil			
1 - 2-	1	SS	16-6-4-4	10		Clayey Silt, some Sand, trace Gravel, Moist, Medium Dense (ML)			
3-	2	SS .	4-4-4-4	8		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Loose (ML)			
4- - 5- 6-	3	SS	12-15-17-36	32		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Dense (ML)			
7-	4	SS	12-16-27-21	43	-	Clayey Silt, some Sand, trace to some Gravel, Dark Brown, Moist,			
8- - 9	5	SS	27-33-40-46	73		Very Dense (ML)			
10						End of Boring at 10.0 Feet			
11-									
12 - 13-									
13- - 14-									
15-									
- 16–									
- 17-									
18-									
19-									
20-									
21-	-								
22-	4								
23- 24-									
24- - 25-	- - 								
26-	-								
27-	4								

BORING NO: 8

PRO	JECT NAI	ME: MCI	DA Project			FILE NUMBER: 3960				
LOCA	ATION: TO	own of Fl	orida, New York			OFFSET: None				
DATE	E STARTE	ED/COMF	PLETED: January	y 2022		SURFACE ELEV.: 501 +/- ft				
ENGINEER/ARCHITECT: DRILLING METHOD: Hollow Stem Auger						DRILL CONTRACTOR: Aztech Environmental Technology				
DRILL RIG TYPE: ATV					Г					
DRILL RIG TYPE: ATV						Daniel G Loucks PE				
HAMMER WEIGHT: 140 Lbs						PO Box 163 Ballston Spa, New York 12020				
DROP: 30 Inches						Phone: 518-371-7622				
CASING DIAMETER: OD/ID: 3.75 inch ID						Fax: 518-383-2069				
WATER LEVEL DEPTH: 5 ft TIME: WS										
CASING DIAMETER: OD/ID: 3.75 inch IDWATER LEVEL DEPTH: 5 ftTIME: WSDEPTHSample NumberSample TypeBLOW COUNTS per 						DESCRIPTION				
-	1	SS	10-4-4-4	8	-	Clayey Silt, trace Sand, Dark Brown, Moist to Wet, Loose (ML) Topsoil				
3-	2	SS	4-4-4-4	8		Clayey Silt, trace to some Sand, Brown, Moist, Loose (ML)				
5-	3	SS	12-16-17-17	33		Clayey Silt, trace to some Sand, Gravel, Brown, Moist, Dense (ML)				
7-	4	SS	17-22-21-32	43						
9-	5	SS	22-22-27-43	49		Clayey Silt, some Sand, trace to some Gravel, Dark Brown, Moist, Dense (ML)				
10- - 11 12	6	SS	29-28-23-27	51		Clayey Silt, some Sand, trace to some Gravel, Dark Gray, Moist, Dense (ML)				
12- 13- 14-		PA								
15- 16- 17-	7	SS	19-20-19-20	39						
17 - 18- 19- 20-						End of Boring at 17.0 Feet				
21- 22- 23-										
23- 24- 25-										
26- 27-						· · · · · · · · · · · · · · · · · · ·				

BORING NO: 9

PRO	JECT NA	ME: MCI	DA Project			FILE NUMBER: 3960			
LOC	ATION: TO	own of Flo	orida, New York			OFFSET: None			
LOCATION: Town of Florida, New York DATE STARTED/COMPLETED: January 2022						SURFACE ELEV.: 502 +/- ft			
ENGINEER/ARCHITECT:						DRILL CONTRACTOR: Aztech Environmental Technology			
DRILLING METHOD: Hollow Stem Auger						Daniel C. Laueka DE			
DRILL RIG TYPE: ATV						Daniel G Loucks PE PO Box 163			
HAMMER WEIGHT: 140 Lbs DROP: 30 Inches CASING DIAMETER: OD/ID: 3.75 inch ID WATER LEVEL DEPTH: 18 ft TIME: WS						Ballston Spa, New York 12020			
						Phone: 518-371-7622			
						Fax: 518-383-2069			
DEPTH Sample Sample COUNTS per Number Type 6 inches				''N'' Value	Recovery	DESCRIPTION			
- 1-		00	44.0.4.0	_		Topsoil			
2-	1	SS	14-3-4-3	7		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Loose to Medium Dense (ML)			
3-	2	SS	6-4-4-3	8					
4-									
5-	3	SS	8-8-7-6	15					
6 - 7	4	SS	27-27-33-46	60		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Dense to Very Dense (ML)			
8- - 9- -	5	SS	18-21-21-27	42					
10- - 11-	6	SS	18-23-20-38	43		Clayey Silt and Sand, some Gravel, Brown, Moist, Dense (ML-SM)			
12- 13- 14-		PA				Clayey Silt, some Sand, trace Gravel, Dark Gray, Moist, Dense (ML)			
15- 16- 17-	7	SS	32-26-27-22	53					
18- 19-		PA			-	Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML)			
20- 21-	8	SS	5-7-8-7	15					
22- 23- 24-		РА				-			
25- 26- 27-	9	SS	4-6-5-8	11					

BORING NO: 9 SHEET 2 of 2

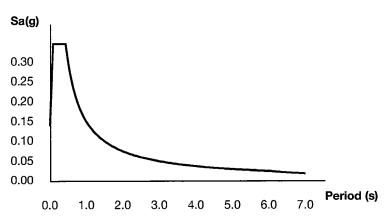
LOCATION: Town of Florida, New York OFFSET: None DATE STARTED/COMPLETED: January 2022 SURFACE ELEV:: 502 +/- ft ENGINEER/ARCHITECT: DRILL CONTRACTOR: Azlech Environmental Technology DRILL NG TYPE: ATV Daniel G Loucks PE PO Box 163 Ballston Spa, New York 12020 PROP: 30 Inches CASING DIAMETER: OD/ID: 3.75 inch ID VATER LEVEL DEPTH: 18 ft TIME: WS DEPTH Sample Sample 6 inches 0 0 28 PA 30 PA 31 10 33 PA 34 PA 35 11 36 11 37 PA 38 PA 39 PA 40 PA 41 PA 42 PA 44 PA	PRO.	JECT NAI	ME: MCIE	DA Project			FILE NUMBER: 3960
BRILL CONTRACTOR: Aztech Environmental Technology DRILL RIG TYPE: ATV Daniel G Loucks PE PO Box 163 Ballston Spa, New York 12020 Phone: 518-371-7622 Fax: 518-383-2069 DRIL CONTRACTOR: Aztech Environmental Technology Daniel G Loucks PE PO Box 163 Ballston Spa, New York 12020 Phone: 518-371-7622 Fax: 518-383-2069 DEPTH Sample Sample CoUNTS per Number Type COUNTS per 6 inches Nm Recovery Value DESCRIPTION 28 PA	LOCA	ATION: To	own of Flo	orida, New York			OFFSET: None
DRILLING METHOD: Hollow Stem Auger DRILL RIG TYPE: ATV HAMMER WEIGHT: 140 Lbs DROP: 30 Inches CASING DIAMETER: OD/ID: 3.75 inch ID WATER LEVEL DEPTH: 18 ft TIME: WS DESCRIPTION DESCRIPTION DESCRIPTION Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) PA PA PA Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) PA PA PA PA PA Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) Sample Sample Sample Sample Columns of the second sample	DATE	STARTE	ED/COMF	LETED: January	y 2022	·	SURFACE ELEV.: 502 +/- ft
BRILL RIG TYPE: ATV Daniel G Loucks PE HAMMER WEIGHT: 140 Lbs DBOP: 30 Inches CASING DIAMETER: OD/ID: 3.75 inch ID Image: Weight in the	ENGI	NEER/AF	RCHITEC	Т:			DRILL CONTRACTOR: Aztech Environmental Technology
BRILL RG TYPE: AIV PO Box 163 HAMMER WEIGHT: 140 Lbs Ballston Spa, New York 12020 DROP: 30 Inches Phone: 518-371-7622 CASING DIAMETER: OD/ID: 3.75 inch ID TIME: WS WATER LEVEL DEPTH: 18 ft TIME: WS DEPTH Sample Sample COUNTS por 6 inches "N" value Recovery 0 28 PA Image: Count Spa 10 29 PA Image: Count Spa 10 Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) 28 PA Image: Count Spa 10 Image: Count Spa 10 30 PA Image: Count Spa 10 Image: Count Spa 10 31 10 SS 6-6-11-13 17 32 Image: Count Spa 10 Image: Count Spa 10 Image: Count Spa 10 33 PA Image: Count Spa 10 Image: Count Spa 10 Image: Count Spa 10 33 PA Image: Count Spa 10 Image: Count Spa 10 Image: Count Spa 10 34 PA Image: Count Spa 10 Image: Count Spa 10 Image: Count Spa 10 36 Image: Count Spa 10 Image: Count Spa 10 </td <td>DRIL</td> <td>LING ME</td> <td>THOD: H</td> <td>ollow Stem Auge</td> <td>r</td> <td>г</td> <td></td>	DRIL	LING ME	THOD: H	ollow Stem Auge	r	г	
HAMMER WEIGHT: 140 Lbs Ballston Spa, New York 12020 DROP: 30 Inches Fax: 518-371-7622 CASING DIAMETER: OD/ID: 3.75 inch ID TIME: WS Sample Sample Blow rive OEPTH Sample Sample BLOW COUNTS per "N" 0 OUNTS per "N" Recovery DESCRIPTION 28- 29- 30- 30- 30- 30- 30- 30- 30- 30- 30- 30	DRIL	L RIG TY	PE: ATV				
DROP: 30 Inches Phone: 518-371-7622 CASING DIAMETER: OD/ID: 3.75 inch ID TIME: WS Phone: 518-383-2069 DEPTH Sample Number Sample Type BLOW COUNTS per 6 inches "N" Value Recovery DESCRIPTION 28- 29- 30 30 31 34 34 35 36- 36- 36- 37 37 34 34 34 34 36- 36- 37 37 34 34 36- 37 37 34 34 36- 37 37 37 37 37 37 37 37 37 37 37 37 37	НАМІ	MER WEI	GHT: 140) Lbs			
CASING DIAMETER: DDID: 3.75 includ WATER LEVEL DEPTH: 18 ft TIME: WS DEPTH Sample Number Sample Type BLOW COUNTS per 6 inches "N" Value Recovery DESCRIPTION 28- 29- 30- 30- 30- 30- 30- 30- 30- 30- 30- 30	DRO	: 30 Incl	nes				
Sample Number Sample Number Sample Type BLOW COUNTS per 6 inches 'N' value Recovery DESCRIPTION 28 PA PA I I Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) 30 10 SS 6-6-11-13 17 I 31 10 SS 6-6-11-13 17 I 33 PA I I I 34 PA I I I 35 I SS 6-5-5-9 10 36 I1 SS 6-5-5-9 10 37 I I I I 39 I I I I 40 I I I I 41 I I I I	CASI	NG DIAM	ETER: O	D/ID: 3.75 inch II	D		Fax: 518-383-2069
DEPTH Sample Sample Number Sample Type COUNTS per 6 inches Recovery DESCRIPTION 28 PA PA Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to Wet, Medium Dense (ML) Wet, Medium Dense (ML) 30 10 SS 6-6-11-13 17 Wet, Medium Dense (ML) 31 10 SS 6-6-11-13 17 Wet, Medium Dense (ML) 32 PA PA PA PA 34 PA PA PA PA 35 A PA PA PA 36 PA PA PA PA 37 PA PA PA PA 36 PA PA PA PA 37 PA PA PA PA 38 PA PA PA PA 39 PA PA PA PA 40 PA PA PA PA 41 PA PA PA PA 42 PA PA PA PA 44 PA PA PA PA						ws	
28- PA PA 29- PA Wei, Medium Dense (ML) 30- SS 6-6-11-13 17 32- PA PA 33- PA PA 36- 11 SS 6-5-5-9 10 37- SS 6-5-5-9 10 End of Boring at 37.0 Feet 38- SS 6-5-4 SS 6-5-5-9 40- SS 6-5-5-9 10 Find of Boring at 37.0 Feet 40- SS 6-5-5-9 10 Find of Boring at 37.0 Feet 44- SS 6-5-5-9 10 Find of Boring at 37.0 Feet	DEPTH	Sample Number		COUNTS per		Recovery	DESCRIPTION
29- PA		-					Clayey Silt, trace to some Sand, trace Gravel, Dark Gray, Moist to
30 -			PA				Wet, Medium Dense (ML)
31 10 SS 6-6-11-13 17 32 PA PA PA 34 PA PA PA 36 11 SS 6-5-5-9 10 37 PA PA PA PA 38 PA PA PA PA 39 PA PA PA PA 40 PA PA PA PA 40 PA PA PA PA 34 PA PA PA PA 35 PA PA PA PA 36 11 SS 6-5-5-9 10 37 PA PA PA PA 38 PA PA PA PA 39 PA PA PA PA 40 PA PA PA PA 43 PA PA PA PA 44 PA PA PA PA							
32 -		10	SS	6-6-11-13	17		
34 PA PA 35 - 11 SS 6-5-5-9 10 36 11 SS 6-5-5-9 10 37 - - - 38 - - - 39 - - - 40 - - - 41 - - - 42 - - - 43 - - -	- 1						
34- 35- 11 SS 6-5-5-9 10 36- 11 SS 6-5-5-9 10 37-	33-	-					
36 11 SS 6-5-5-9 10 37	34-	4	PA				
37	35-						
38- 39- 40- 41- 42- 43- 44-	36-	11	SS	6-5-5-9	10		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							End of Boring at 37.0 Feet
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-					
41 - 42 - 43 - 44 -	-	-					
42							
44		-					
		-					
	45-	-					
46		4					
47-	47-						
48-							
49		1					
	1 -	4					
		1					
53- 54-	-						

BORING NO: 11

PRO	JECT NAI	NE: MCIE	DA Project			FILE NUMBER: 3960				
· · · · · · · · · · · · · · · · · · ·						OFFSET: None				
DATE STARTED/COMPLETED: January 2022						SURFACE ELEV.: 515 +/- ft				
ENGINEER/ARCHITECT: DRILLING METHOD: Hollow Stem Auger						DRILL CONTRACTOR: Aztech Environmental Technology				
DRILLING METHOD: Hollow Stem Auger DRILL RIG TYPE: ATV						Daniel C. Laueka DE				
						Daniel G Loucks PE PO Box 163				
HAMMER WEIGHT: 140 Lbs						Ballston Spa, New York 12020				
DROP: 30 Inches						Phone: 518-371-7622				
CASING DIAMETER: OD/ID: 3.75 inch ID						Fax: 518-383-2069				
WATER LEVEL DEPTH: 6 ft TIME: WS										
DEPTH Sample Number Sample Type BLOW COUNTS per 6 inches "N" Value Recovery 1 - 1 1 SS 4-3-3-2 6 -						DESCRIPTION				
-				-		Topsoil				
-		55	4-3-3-2	6		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Loose (ML)				
3-	2	SS	5-4-3-3	7		Clayey Silt and Sand, trace Gravel, Brown, Moist to Wet, Loose (ML-SM)				
4-		-								
5-	3	SS	2-4-6-8	10						
6- 7-	4	SS	12-27-19-23	46		Clayey Silt, some Sand, trace Gravel, Brown, Moist to Wet, Medium Dense to Dense (ML)				
8 - 9 10	5	SS	11-11-13-10	23						
11–	6	SS	7-9-9-11	18		Clayey Silt, some Sand, trace to some Gravel. Dark Brown, Moist to Wet, Medium Dense (ML)				
12- - 13-	7			100+		No Recovery				
14- 15-						End of Boring at 12.6 Feet Power Auger Refusal				
16- - 17-										
18-										
10 19-										
20										
- 21–	-									
22-	-									
23-	-									
24-	4									
25-										
26-	_									
27-	1									

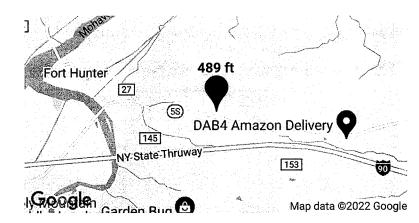
BORING NO: 10

PRO		ME: MCIE	DA Project			FILE NUMBER: 3960
LOCA	ATION: TO	own of Flo	orida, New York			OFFSET: None
DATE	E STARTI	ED/COMF	PLETED: January	/ 2022		SURFACE ELEV.: 507 +/- ft
ENGI	NEER/AF	RCHITEC	T:			DRILL CONTRACTOR: Aztech Environmental Technology
DRIL	LING ME	THOD: H	ollow Stem Auge	r	ſ	Devial O Levelse DE
DRIL	L RIG TY	PE: ATV				Daniel G Loucks PE PO Box 163
HAMI	MER WEI	GHT: 140) Lbs			Ballston Spa, New York 12020
DROF	P: 30 Incl	nes				Phone: 518-371-7622
CASI	NG DIAM	ETER: O	D/ID: 3.75 inch II	С		Fax: 518-383-2069
WATER LEVEL DEPTH: None ObservedTIME: WS						
DEPTH	Sample Number	Sample Type	BLOW COUNTS per 6 inches	''N'' Value	Recovery	DESCRIPTION
-			0504	_		Topsoil
1	1	SS	9-5-3-4	8		Clayey Silt, trace to some Sand, trace Gravel, Brown, Moist, Loose (ML)
3-	2	SS	6-5-6-12	11		Clayey Silt, some Sand, trace Gravel, Brown, Moist, Medium Dense (ML)
5-	3	SS	11-12-13-15	25		
6-	4	SS	15-17-24-23	41		Clayey Silt, some Sand, trace to some Gravel, Brown, Moist, Dense (ML)
8- 9- 9-	5	SS	15-18-30-30	48		Clayey Silt, some Sand, trace Gravel, Dark Brown, Moist, Dense (ML)
10- 11- 12-	6	SS	14-14-43-31	57		Clayey Silt, some Sand, trace Gravel, Dark Gray, Moist, Dense to Very Dense (ML)
13- 14-		PA				
15- 16- 17-	7	SS	20-23-27-17	50		
18- 19-		PA				
20-	8	SS	30-50	80+		Clayey Silt and Gravel, trace to some Sand, Dark Gray, Moist,
21- 22- 23- 24- 25-						Very Dense (ML-GM) End of Boring at 21.0 Feet Split Spoon Refusal
26- 27-						

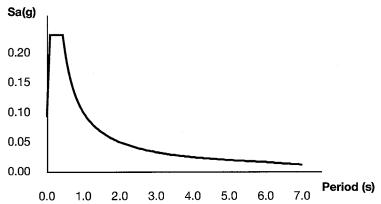


Search Information

Address:	2018 NY-5S, Amsterdam, NY 12010, USA
Coordinates:	42.93706189999999, -74.26052969999999
Elevation:	489 ft
Timestamp:	2022-02-04T16:02:29.891Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	I
Site Class:	D



Basic Parameters


Name	Value	Description
SS	0.217	MCE _R ground motion (period=0.2s)
S ₁	0.063	MCE _R ground motion (period=1.0s)
S _{MS}	0.347	Site-modified spectral acceleration value
S _{M1}	0.15	Site-modified spectral acceleration value
S _{DS}	0.231	Numeric seismic design value at 0.2s SA
S _{D1}	0.1	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
SDC	В	Seismic design category
Fa	1.6	Site amplification factor at 0.2s

Design Horizontal Response Spectrum

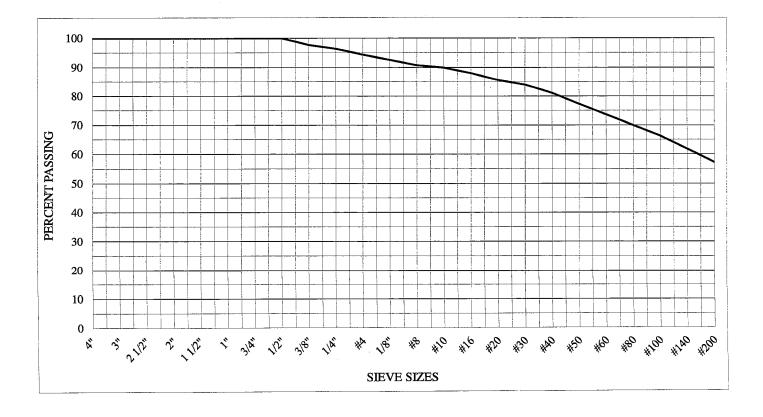
Fv	2.4	Site amplification factor at 1.0s
CR _S	0.945	Coefficient of risk (0.2s)
CR ₁	0.922	Coefficient of risk (1.0s)
PGA	0.12	MCE _G peak ground acceleration
F _{PGA}	1.56	Site amplification factor at PGA
PGA _M	0.187	Site modified peak ground acceleration
TL	6	Long-period transition period (s)
SsRT	0.217	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.23	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.063	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.068	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

INSPECTION & TESTING DIVISION, P.D.& T.S., INC. 4 William Street, Ballston Lake, New York 12019 Phone: (518) 399-1848 Email: constructiontech@live.com

CLIENT: DANIEL LOUCKS, P.E.


POST OFFICE BOX 163 BALLSTON SPA, NEW YORK 12020 REPORT DATE:02/02/22SAMPLE NUMBER:21648OUR FILE NO:750.001Rebert BehanREVIEWED BY:ROBERT BEHAN, NICET

ATTN: MR. DANIEL LOUCKS, P.E. PROJECT: MCIDA: AMSTERDAM, NEW YORK

ASTM C136 / C117 / D422: SIZE DISTRIBUTION OF SOIL & AGGREGATES: SIEVE ANALYSIS

MATERIAL SOURCE:	CLIENT ID: SB-8, 2'-4'
MATERIAL DESCRIPTION:	SILT/CLAY; and fine Sand; trace fine Gravel
MATERIAL PROJECT USE:	PER CLIENT:
EVALUATION SPECIFICATION:	PER CLIENT:

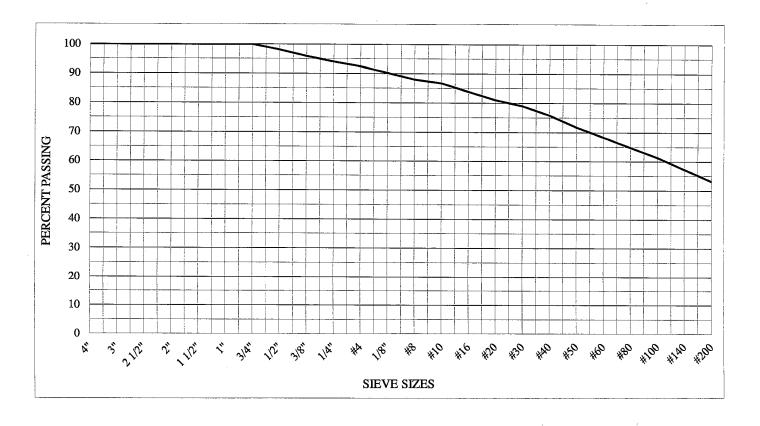
COA	RSE SIEVE	SERIES: U	S STANDARD	MEDIUM SIEVE SERIES: US STANDARD				FINE SIEVE SERIES: US STANDARD			
SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION
SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE
4"				1/4"	3.6	96.4		#50	22.7	77.3	
3"				#4	5.6	94.4		#60			
2 1/2"				1/8"				#80			
2"				#8	9.2	90.8		#100	33.7	66.3	
1 1/2"				#10				#140			
1"				#16	12.0	88.0		#200	42.7	57.3	
3/4"				#20				SILT			
1/2"		100.0		#30	16.0	84.0		CLAY			
3/8"	2.3	97.7		#40	18.9	81.1		COLLOID			

INSPECTION & TESTING DIVISION, P.D.& T.S., INC. 4 William Street, Ballston Lake, New York 12019 Phone: (518) 399-1848 Email: constructiontech@live.com

CLIENT: DANIEL LOUCKS, P.E.

POST OFFICE BOX 163 BALLSTON SPA, NEW YORK 12020

ATT'N: MR. DANIEL LOUCKS, P.E. PROJECT: MCIDA: AMSTERDAM, NEW YORK


REPORT DATE:	02/02/22
SAMPLE NUMBER:	21649
OUR FILE NO:	750.001
	Robert Behan

REVIEWED BY: ROBERT BEHAN, NICET

ASTM C136 / C117 / D422: SIZE DISTRIBUTION OF SOIL & AGGREGATES: SIEVE ANALYSIS

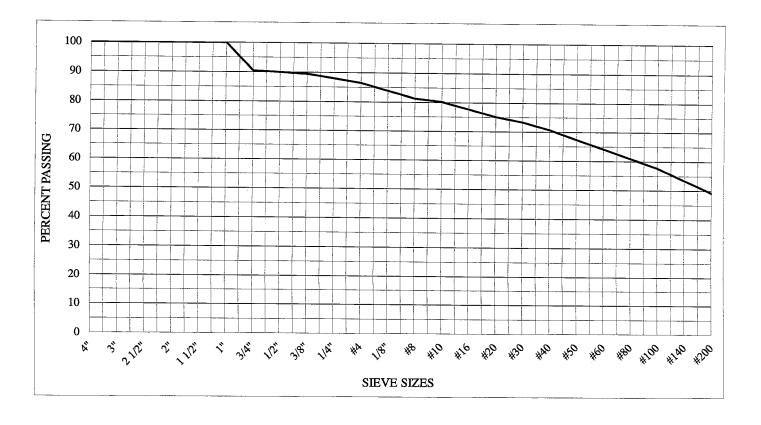
MATERIAL SOURCE:CLIENT ID: SB-9, 4'-6'MATERIAL DESCRIPTION:SILT/CLAY; and fine Sand; trace fine GravelMATERIAL PROJECT USE:PER CLIENT:EVALUATION SPECIFICATION:PER CLIENT:

COA	ARSE SIEVH	E SERIES: U	S STANDARD	MEI	DIUM SIEVI	SERIES:	US STANDARD	FINE	SIEVE SE	RIES: US S	STANDARD
SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION
SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE
4"				1/4"	6.0	94.0		#50	28.2	71.8	
3"				#4	7.6	92.4		#60			
2 1/2"				1/8"				#80			
2"				#8	12.0	88.0		#100	38.7	61.3	
1 1/2"				#10				#140			
1"				#16	16.1	83.9		#200	46.8	53.2	
3/4"		100.0		#20				SILT			
1/2"	1.9	98.1		#30	21.0	79.0		CLAY			
3/8"	4.1	95.9		#40	24.1	75.9		COLLOID			

INSPECTION & TESTING DIVISION, P.D.& T.S., INC. 4 William Street, Ballston Lake, New York 12019 Phone: (518) 399-1848 Email: constructiontech@live.com

CLIENT: DANIEL LOUCKS, P.E.

POST OFFICE BOX 163 BALLSTON SPA, NEW YORK 12020


ATTN: MR. DANIEL LOUCKS, P.E. PROJECT: MCIDA: AMSTERDAM, NEW YORK

REPORT DATE:	02/02/22
SAMPLE NUMBER:	21650
OUR FILE NO:	750.001
	Robert Behan
REVIEWED BY:	ROBERT BEHAN, NICET

ASTM C136 / C117 / D422: SIZE DISTRIBUTION OF SOIL & AGGREGATES: SIEVE ANALYSIS

MATERIAL SOURCE:	CLIENT ID: SB-10, 4'-6'
MATERIAL DESCRIPTION:	SILT/CLAY; and fine Sand; little fine Gravel
MATERIAL PROJECT USE:	PER CLIENT:
EVALUATION SPECIFICATION:	PER CLIENT:

COA	ARSE SIEVI	E SERIES: U	S STANDARD	MEI	DIUM SIEVI	E SERIES: U	JS STANDARD	FINE	SIEVE SE	RIES: US S	TANDARD
SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION	SIEVE	PERCENT	PERCENT	SPECIFICATION
SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE	SIZE	RETAINED	PASSING	ALLOWANCE
4"				1/4"	12.0	88.0		#50	32.6	67.4	
3"				#4	13.4	86.6		#60			
2 1/2"				1/8"				#80			
2"				#8	18.7	81.3		#100	42.3	57.7	
1 1/2"				#10				#140			
1"		100.0		#16	22.3	77.7		#200	50.7	49.3	
3/4"	9.5	90.5		#20				SILT			
1/2"				#30	26.7	73.3		CLAY			
3/8"	10.5	89.5		#40	29.3	70.7		COLLOID			

INSPECTION & TESTING DIVISION, P.D.& T.S., INC. 4 William Street, Ballston Lake, New York 12019 Phone: (518) 399-1848 Email: constructiontech@live.com

CLIENT: DANIEL LOUCKS, P.E.

POST OFFICE BOX 163 BALLSTON SPA, NEW YORK 12020 REPORT NUMBER: 1 : PAGE: 1 REPORT DATE: 02/02/22 OUR FILE NUMBER: 750.001 LAB CONTROL NUMBER: 21651

ATT'N: MR. DANIEL LOUCKS, P.E.

PROJECT: MCIDA: AMSTERDAM, NEW YORK

DETERMINATION OF PLASTICITY INDEX & WATER (MOISTURE) CONTENT IN SOILS

SAMPLE ID: CLIENT ID: SB-5, 35'-37' ASTM D-4318 LIQUID LIMIT 23.1%

ASTM D-4318 PLASTIC LIMIT **14.3%** ASTM D-4318 PLASTICITY INDEX 9

REPORT DISTRIBUTION	RESPECTFULLY SUBMITTED,
1: FILE 2:	CONSTRUCTION TECHNOLOGY Robert Behan
3:	ROBERT BEHAN (NICET)
4:	MANAGER TECHNICAL SERVICES

Table 3.5 Unified Soil Classification

J

	F Parting Torris	ield Ident	ification Procedi	ures		Group					
	in the formation	estim	Contractions particular states and pasing iractions cating and weights)	DASING IFACTION	ts on	Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria
	əzis	an gravels tic or no fines)	Wide range i amounts o sizes	Wide range in grain size and substantial amounts of all intermediate particle sizes	nd substantial diate particle	GH	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand		1	$C_{\rm U} = \frac{D_{\rm e0}}{D_{\rm 10}} \text{Greater than 4}$ $C_{\rm U} = \frac{D_{\rm 20}}{D_{\rm 20}}^{2} \text{Between 1 and 3}$
	s larger s larger s larger		Predominantl with some	Predominantly one size or a range of sizes with some intermediate sizes missing	range of sizes sizes missing	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	and gravel; maximum size; angularity, surface condition, and hardness of the coarse			$\frac{2}{10} \wedge \frac{2}{60}$ Not meeting all gradation requirements for GW
ye) ve size ^b	ns than action i No. size ma size ma	es) eciable ratiof coi cs) cs)	Nonplastic fi cedures see	Nonplastic fines (for identification pro- cedures see ML below)	ification pro-	ВM	Silty gravels, poorly graded gravel-sand-silt mixtures	RTAINS: local or geologic name and other pertinent descriptive information; and symbols in parentheses	τ	ion smal SC SP SC SC SC SC SC SC SC SC SC SC SC SC SC	t limits below A
ois 002 .	fi Ine { in.	idqs) iqqs)	Plastic fines (for see CL below)	Plastic fines (for identification procedures, see CL below)	in procedures,	ວອ	Claycy gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of	toitschit	es (fracti soils are GP, SW SOIls are	Atterberg limits above borderline cases "Atterberg limits above borderline cases "Atterberg limits above dual symbols
Coarse-gr re than hal si than No. s visible to	f coarse sr than ize ssification, saient to th	unes) an sands an sands	Wide range in amounts of sizes	in grain sizes and substantial of all intermediate particle	nd substantial diate particle	ANS	Well graded sands, gravelly sands, little or no fines	monteners conditions and drainage characteristics Example: Silv and, aravely: about 20%	r field iden	ses of grav free grained GW, GW, GW, Borde GW, GW, GW, GW, GW, GW, GW, GW, GW, GW,	ircater than 6 Between
อริเซเ	n lish Sicve s Sicve s Sicve s Sicve s	Cie Cie	Predominantly with some	Predominantly one size or a range of sizes with some intermediate sizes missing	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	hard, angular gravel particles 1-in. maximum size; rounded and subangular sand grains	opun u		o gradation requiremer
rnallest	action is No.4 For visi	ines ines innt of unt of unt of (son	Nonplastic fir cedures, s	Nonplastic fines (for identification cedures, see ML below)	ification pro-	WS	Silty sands, poorly graded sand- silt mixtures	coarse to fine, about 15% non- plastic fines with low dry strength; well compacted and moist in place; allivial sawd.	avig 26 i	90.	Atterberg limits below Above "A" line "A" line or P/less than with P/ between
		oure Idde) U	Plastic fines (for see CL belo	Plastic fines (for identification procedures, see CL below)	n procedures,	sc	Clayey sands, poorly graded sand-clay mixtures	(NS)			5 4 and 7 are Atterberg limits below borderline cases "A." line with by requiring use of
	Identification Pr	Procedures o	on Fraction Smaller than No.	uller than No.	40 Sicve Size				វេទ		_
CVC SIZE IS 8	sA		Dry Strength, (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				entifying th		Combaring soils at equal limit limit
	and cla jimil biuj JC nadi 2	,e	None to slight	Quick to slow	None	TM	Inorganic silts and very fine sands, rock flour, silty or clayer fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of	bi ni əvrı	8 8 1111111	- Toughness and dry strength increase
ais 007 *0	nii2 pil zəl		Medium to high	None to very slow	Medium	ช	Inorganic clays of low to medium plasticity, gravely clays, sandy clays, slity clays, lears, faug	coarse grains; colour in wet condition; odour if any, local or geologic name, and other perti- nent descriptive information.	ıə əzia ni	S S	
N UE			Slight to medium	Slow	Slight	5	Organic silts and organic silt- clave of low nighting	and symbol in parentheses For undisturbed soils add infa-	618 S		
11 11	l clays limit nan		Slight to medium	Slow to none	Slight to medium	МН	Inorganic silts, micacous or diatomaccous fine sandy or eity soile about other	mation on structure, stratifica- tion, consistency in undisturbed and temoulded states, moisturbed	ŝŪ		
 TAT	biup		High to very high	None	High	CH	Inorganic clays of high plas-	and drainage conditions		2	zu 30 40 50 60 70 80 90 100 Liquid limit
	1I		Medium to high	None to very slow	Slight to medium	HO	Organic clays of medium to high	Litample: Clayey silt, brown; slightly plastic; small percentors of			Plasticity chart
High	Highly Organic Soils	s	Readily identified spongy feel and texture	cadify identified by colour, odour, spongy feel and frequently by fibrous texture	our, odour, y by fibrous	2	Peat and other highly organic soils	fine sand; numerous vertical root holes; firm and dry in place; lowe, (MY)		tor labora	tor laboratory classification of fine grained soils
From Wagner, 1957 Boundary classific	r, 1957. lassifications.	Soils posse	ssing characteri	stics of two gr	roups are desig	nated by	combinations of secure sectors	From Wagner, 1957.			
All sieve si	zes on this char	rt are U.S.	standard.		4		T slouds drong or group shippois. I	ror example GW-GC, well graded gi	ravel-sa	nd mixture with c	lay binder.
These pr	ocedures are to	be perform	ned on the minu:	s No. 40 sieve s	size particles, al	<i>Field</i> , pproximat	Field Identification Procedure for Fine Grained Soils or Fractions oximately Ma in. For field classification numbers commission in an	athed Solls or Fractions	•		These procedures are to be performed on the minus No. 40 sieve size particles, approximately Vat in. For field classification processes enserting to an enserting to a second to a second s
After rem	Dilatancy (Reaction to shaking): After removing particles larger than No. 40	ing): larger thai	n No. 40 sieve t	sieve size, prepare a pat of	a pat of A	ry Strengt	Strength (Crushing characteristics):	DU TOTAL CONTRACTOR OF THE PROPERTY OF THE PRO	urphy re	, simply remove by hand the coarse particle Toughness (Consistency near plassic limit).	coarse particles that interfore with the tests,

After removing particles larger than No. 40 sieve size, prepare a pat of Miler removing particles larger than No. 40 sieve size, prepare a pat of water if necessary to make the soil soft unit or ticky. After the pat in the open path of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the raw which danges to a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat siftens and finally it relates to rempiles. The rapidity of appearance of water on the surface of the sample structure a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat siftens and finally it creates or trupikes. The rapidity of appearance of water of the threak and of its disappearance during squeezing assist in fleetuitying the charactes or the fines in a soil. Very fine clean gands give the quickett and most disting reaction whereas a plastic chara and streak of vertion. Intorgante sitts, such as a typical rock flour, show a moderately quick reaction.

Dry Strength (Crushing characteristics). After removing particles larger than No. 40 sieve size, mould a pat of soil dry completely by oven, part of adding water firecessary. Allow the pat to breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the High dry strength increases with increasing plasticity. Argin fraction soft is the accertance of the soft fraction contained in the High dry strength is characteristic for clays of the CF group. Argin increase and silfs have about the same flat dry strength. Silfy fine sands by the feel when powdering the dried apeciment. Fine sand feels gritty whereas a typical silf has the smooth feel of flour.

Torgimess (Consistency near plastic limit): After removing particles larger than the No. 40 size size, a specimen of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth aimeter. The thread is than layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth diameter. The thread is that foolded and te-rolled repeatedly. During this manupulation the moisture content is gradually reduced and the predimen stiffer thanky loses its plasticity, and crumbles when the main this freached. The torget in failing the plastic limit and the stiffer the lump when sight kneading such could be lumped together and a slight kneading such countent is such ally reacted in the solute of the lump below the plastic limit and the stiffer the solu-sing flow plastic) with the plastic limit and the stiffer the solutence of the lump below the plastic limit and quet hose observe of the lump below the plastic limit and quet hose show plays when down the AlmG. Highly organic clays have a very weak and spong feel at the plastic limit.

		-			Soil Charac	Soil Characteristics Pertinent to Roads and Airfields	o Roads and Airfield	ds.		-			-
Major Divisions	isions	Letter	Natne	Value as Subgrade When	Value as	Value as	Potential	Compressibility	Drainaoe	Communican Francis		1	
		E		Not Subject to Frost Action	Subbase When Not Subject to Frost Action	Base When Not Subject to Frost Action	Frost Action	and Expansion	Characteristics	compaction Equipment	Unit Dry Weight Ib. per	Typical De CBR	Typical Design Values CBR Subgrade Modulue b
-		MD	Well-graded gravels or gravel-sand mixtures, little or no fines	Excellent	Excellent	Good	None to very	Almost none	Excellent	Crawler-type tractor, rubber-tired	cu. ft. 125-140	(Z) 40.80	lb. per cu. in.
		G	Poorly graded gravels or gravel-sand	Good to excellent	Good		ungine			rolier, steel-wheeled roller		27-27 .	Mc-mc
	GRAVEL		mixtures, fittle or no fines			rair tu good	None to very slight	Almost none	Excelient	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	110-140	30-60	300-500
	GRAVELLY SOILS	WB	mixtures	COOD TO EXCELLENT	Good	Fair to good	Slight to medium	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	125-145	40-60	300-500
		- 2		Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	1	115-135	20-30	200-500
COARSE-		3	Clayey gravels, gravel-sand-clay mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	130-145 ·	20-40	200-500
GRAINED SOILS		SW	Well-graded sands or gravely sands, little or no fines	Good	Fair to good	Poor	None to very slight	Almost none	Excellent		110-130	20-40	200.400
	SAND	ŝ	Poorly graded sands or gravely sands, little or no fines	Fair to good	Fair	Poor to not	None to very	Almost none	Excellent	roller Crawler-type tractor reither fired		2	
	AND SANDY	P	Silty sands, sand-silt mixtures	Fair to good	Edit to and	suitable	slight .			roller	CE1-CD1	10-40	150-400
	SOILS	SM u		no gou ma	rait to good	Poor	Slight to high	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	120-135	i5-40	150-400
				Fair	Poor to fair	Not suitable	Slight to high	Slight to medium	Poor to practically	Rubber-tired roller, sheepsfoot	100-130	10-20	100-300
		SC	Clayey sands, sand-clay mixtures	Poor to fair	Poor	Not suitable	Slight to high	Slight to medium			100.136		
		ML	Inorganic silts and very fine sands,	Poor to fair	Not suitable	Not suitable						n7-c	100-300
 	SILTS AND		rock flour, silty or clayey fine sands or clayey silts with slight plasticity				high	Slight to medium	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	051-06	15 or less	100-200
	CLAYS LL IS LESS THAN 50	ರ	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Poor to fair	Not suitable	Not suitable	Medium to high	Medium	Practically impervious	Rubber-tired roller, sheepsfoot roller	90-130	15 or less	50-150
FINE- GRAINED SOILS		ы	Organic silts and organic silt-clays of low plasticity	.Pioor	Not suitable	Not suitable	Medium to high	Medium to high	Poar	Rubber-tired roller, sheepsfoot	90-105	5 or less	50-100
	Sturs	HW	inorganic stilts, micaceous or diatomaceous fine sandy or silty soils, clastic stilts	Poor	Not suitable	Not suitable	Medium to very high	High	Fair to poor	roller Sheepsfoot roller, rubber-tired roller	80-105) or less	50-100
	CLAYS	£	Inorganic clays of medium to high plasticity, organic silts	Poor to fair	Not suitable	Not suitable	Medium	High		Sheensfoot roller rubber incel			
	GREATER THAN 50	R	\uparrow	Poor to very moor	Not suitable				impervious	roller	511-06	15 or less	50-150
	to Soli s	ē			sultance	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	80-110	5 or less	25-100
			reat and other highly organic soils	Not suitable	Not suitable	Not suitable S	Slight	Very high F	Fair to poor	Compaction not practical			
			•										

(2) The maximum value that can be used in design of airfields is, in some cases, limited by gradation and plasticity requirements.

1

• . Note: (1) Unit Dry Weights are for compacted soil at optimum moisture content for molified AASPO compacted neffort. Division of GM and SM groups into subdivision of and u are for neas and airfields only. Subdivision is basis of Aureberg limits suffix d (e.g., GMd) will be used when the liquid limit (LL) is 25 or less and the plasticity index is 6 or less, the suffix u will be used otherwise.

4

÷ ۰,

:

.

GENERAL QUALIFICATIONS

This report has been prepared in order to aid in the evaluation of this property and to assist the architect and/or engineer in the design of this project. The scope of the project and location described herein, and my description of the project represents my understanding of the significant aspects relevant to soil and foundation characteristics. In the event that any changes in the design or location of the proposed facilities, as outlined in this report, are planned, I should be informed so the changes can be reviewed and the conclusions of this report modified or approved in writing by myself.

It is recommended that all construction operations dealing with earthwork and foundations be inspected by an experienced soil engineer to assure that the design requirements are fulfilled in the actual construction. If you wish, I would welcome the opportunity to review the plans and specifications when they have been prepared so that I may have the opportunity of commenting on the effect of soil conditions on the design and specifications.

The analysis and recommendations submitted in this report are based upon the data obtained from the soil borings and/or test pits performed at the locations indicated on the location diagram and from any other information discussed in the report. This report does not reflect any variations which may occur between these boring and/or test pits. In the performance of subsurface investigations, specific information is obtained at specific locations at specific times. However, it is a well-known fact that variations in soil and rock conditions exist on most sites between boring locations and also such situations as groundwater conditions vary from time to time. The nature and extent of variations may may not become evident until the course of construction. If variations then appear evident, it will be necessary for a reevaluation of the recommendations of this report after performing on-site observations during the construction period and noting the characteristics of any variations.